

IMMINGHAM EASTERN RO-RO TERMINAL

Environmental Statement: Volume 3 Appendix 12.2 Factual Report Document Reference: 8.4.12(b)

APFP Regulations 2009 – Regulation 5(2)(a) and 5(2)(e) PINS Reference – TR030007

December 2022

Page intentionally left blank

GEOENVIRONMENTAL INVESTIGATION REPORT

NORDIC CONCEPT STAGE

FOR

HBPW LLP

GDP PROJECT NUMBER 19112

APRIL 2020

Issue Record:

Issue	Date	Comment
1	08/04/2020	For Comment

This report is written for the exclusive use of HBPW LLP and their appointed agents. No other third party may rely on or reproduce the contents of this report without the written approval of GD Pickles Ltd. If any unauthorised third party comes into possession of this report, they rely upon it entirely at their own risk and the authors do not owe them any Duty of Care or Skill.

Report prepared by:

Jay Fox BEng (Hons) PGDWasteMgmt CGeol EurGeol CEnv MCIWM SiLC FGS

Technical Director Date: 08 April 2020 Report reviewed by:

Gareth Pickles BSc (Hons)

Managing Director Date: 08 April 2020

GD Pickles Ltd. Geoenvironmental Investigation Report Nordic Concept Stage Report Reference 19112.01 April 2020

TABLE OF CONTENTS

1.0 INTRODUCTION	
1.1 Authorisation, Purpose and Context	
1.2 Site Location and Description	
1.3 Sources of Information	
2.0 SCOPE OF INTRUSIVE GROUND INVESTIGATIONS	
2.1 Fieldwork	
3.0 OBSERVED GROUND CONDITIONS	
3.1 Ground Model	
3.2 Observations of Contamination	
4.0 ASSESSMENT OF CONTAMINATION	
4.1 Initial Conceptual Site Model	
4.2 Generic Assessment Criteria	
4.3 Geochemical Test Results	
4.3.1 Commercial Land Use	
4.3.2 Asbestos in Soil	. 21
4.3.3 Leachate Analysis	. 21
4.4 Risk Evaluation	
5.0 REMEDIATION PROPOSALS	
5.1 Outline Remediation Requirements	
5.2 Other Development Considerations	
5.2.1 Buried Water Supply	
5.2.2 Materials Management and Waste Disposal	
6.0 ENGINEERING ASSESSMENT	
6.1 Geotechnical Material Properties	
6.1.1 Insitu Testing	
6.1.2 Classification Testing	
6.1.3 Geotechnical Parameters	
6.3.1.1 Undrained Shear Strength	
6.3.1.2 One Dimensional Consolidation	
6.4 Discussion of Foundation Issues	
6.5 Pavement Design	
6.6 Design of Buried Concrete	
6.7 Excavation Stability	
6.8 Drainage and SuDS	
7.0 CONCLUSIONS AND RECOMMENDATIONS	
7.1 Summary of Site Description	
7.2 Summary Ground Conditions	
7.3 Summary Contaminated Land Status	
7.4 Engineering Recommendations	
7.5 Recommended Additional Ground Investigation	
8.0 LIMITATIONS	. 38

DRAWINGS

Proposed Development 9Proposed Site Layout – Option 5 (Extract of Waldeck drawing)

HBPW SL06537 Proposed Ground Investigation

19112- 01 Exploratory Hole Location Plan (As Built)
19112- 02 Insitu Testing – SPT N vs Depth
19112- 03 Insitu Testing – Cu vs Depth
19112- 04 Insitu Testing – Mv vs Depth
19112- 05 Conjectured Ground Treatment and Surfacing

TABLES

Table 3.1: Ground Model Table 4.1: Initial Conceptual Model Table 4.3.1: Comparison of soil samples to relevant GAC for Commercial land use Table 4.4: Conceptual Site Model CSM Table 6.6: Summary Data for Buried Concrete Design

APPENDICES

- Appendix 1: Exploratory Hole Logs
- Appendix 2: BGS Records
- Appendix 3: Photographs
- Appendix 4: Laboratory Test Certificates
- Appendix 5: Insitu CBR Test Certificates
- Appendix 6: Risk Assessment Methodology

1.0 INTRODUCTION

1.1 Authorisation, Purpose and Context

GD Pickles Ltd (GDP) was instructed by HBPW LLP (the Client) to undertake a Phase 2 Geoenvironmental Investigation of land at Immingham Docks (the 'Site').

The ground investigation is to be used to support the feasibility study for the project. The project is called Nordic Concept Stage.

This Report presents the findings of the Phase 2 intrusive site investigation and associated soil sampling, insitu and laboratory testing.

The primary purpose of the Report is to determine the likely ground conditions and if possible to provide preliminary geotechnical design parameters to inform engineering and drainage design.

The Report also includes a preliminary assessment of contamination including a Conceptual Site Model, Risk Assessments and preliminary recommendations for remediation where applicable. This has been undertaken to adequately consider risks for CDM and materials management purposes. Further assessment would be required once final development designs have been confirmed.

There were numerous constraints to the proposed investigation due to surface flooding, port and tenant activities and large areas obscured by stockpiled soils etc. A number of buried services were also present. Where possible locations were moved to accommodate constraints but several proposed locations were not completed and details of these are included later in this Report.

1.2 Site Location and Description

The Site is located towards the east of Immingham Docks and is made up of several land parcels accessed via a number of routes. The names of all these areas were not provided. A brief summary of the various site areas is as follows.

<u>YARD 6:</u> Land to the north of Robinson Road is known as Yard 6 and was in use for pumice storage. This area was busy with continuous movements of plant and haulage. The stockpiles were transient and moved on a daily basis.

Large parts of Yard 6 were flooded at the time of the investigation. The main water bodies were in the north of the Site and along the south. The reasons for the surface water flooding appear to be the undulating topography of the Site, being 'dished' over large areas, and the

likely associated failure of the surface water drainage system. Where visible the surfacing appeared to be concrete which was broken, cracked and deformed in many areas. There was a complicated series of gullies and surface water drainage in the north of the area but most was obscured by the flooding.

<u>Land to the west of shed 26</u> was mainly laid to tarmac and the northern end was in use for stockpiling of shredded recycled metal. Central south in this area was the contractor compound for the former pumping station decommissioning works. Some bus chassis storage was present in the far south of this area.

<u>Land to the south of Shed 26</u> was a large disused open area that was previously understood to be used for car storage. The surfacing was grey aggregate with thin layers of established organic materials. The Site surface was flat with some ponding of surface water particularly in the far south and east of the area. There were obvious roadways but no significant rutting of the surface.

It is understood that a formerly wide and deep surface water channel crosses this area, possibly now in culvert. The route following the noticeably angled fence line in the south west and crossing to the headwall where it joins the existing open channel to the east of the Site. There is no surface expression of this feature. There are a number of manholes near to the outfall which presumably lie along its route. The available services drawings appear to show that it may have instead been diverted to the east but ABP would know the actual circumstances. The conjectured location of the infilled channel is included on drawings later in this Report.

There is a surface water system (French drain) that is located in this area. The gulley manholes were in good condition at surface and it is understood that this system was installed to control surface water problems in this area. This appears to coincide with the current wetter areas.

Land to the east of this area is separated from the main area by a fence and so access was via the haulage operation. This area was boggy and wet at surface with a great deal of rutting and damage to the surface layers caused by large vehicles. It is thought that this was probably caused during the stockpiling operations that have occurred historically and recently in this area. As a result there is significant surface water ponding with the near surface granular materials saturated at the time of the investigation. The north east of this area was obscured by stockpiles of what appear to be construction excavation arisings. Some materials were tipped very wet as they have slumped.

<u>Foundry Sand Area.</u> This area was in constant use with limited access to the central area. Most of the area, where not under the main stockpile, was covered by a thin layer of foundry sand although a concrete slab was evident in the north east. Redundant plumbing disconnected at ground level suggests a previous structure/temporary building(s) in the north of the area.

Land to the south of the Foundry Sand Area was accessed via the track running alongside the railway. Apart from a narrow strip along the boundary with the Foundry Sand Area this area was obscured by stockpiles. These contained a number of items that would puncture an excavator tyre and so no access was possible to investigate the underlying ground conditions. A larger excavator would also be required to reach the underlying formation.

1.3 Sources of Information

In completing this assessment, GDP has utilised the following information:

- Information supplied by the Client;
- Prior knowledge of the ground conditions around the Port; and
- Various on-line sources including The British Geological Survey.

2.0 SCOPE OF INTRUSIVE GROUND INVESTIGATIONS

2.1 Fieldwork

The scope of ground investigation was provided by HBPW LLP and presented on drawing SL06537.100 Proposed Ground Investigation and is included later in this Report.

A utilities clearance survey was undertaken by Avoin Maa Surveys Ltd between 5 and 6 February 2020. As a result a number of locations were moved to avoid underground services, suspected services or other constraints.

The ground investigation was undertaken between 24 and 29 February 2020. This comprised the completion of 6no. cable percussion boreholes, 1no. rotary percussive borehole, and 15no. machine excavated trial pits using a 9 te backhoe excavator. Insitu CBR was undertaken in trial pits where ground conditions allowed.

At the time of the investigation large parts of the Site were inaccessible or otherwise constrained and so 9no. of the trial pits were not completed.

Monitoring wells were installed in 2no. of the cable percussion boreholes (BH03 and BH05) to enable monitoring of groundwater level conditions. Installation details are provided on the exploratory hole records presented in Appendix 1.

The final positions of the exploratory holes are shown on Drawing No. 19112-01 presented later in this Report. This includes revised XYZ coordinates.

2.2 Laboratory Testing

Representative disturbed samples of excavated soils were collected for subsequent geotechnical and geochemical (contamination), and Waste Acceptability Criteria (WAC) testing.

Geotechnical samples were submitted to I2 for the following geotechnical testing;

- Atterberg limits and moisture content determination (19 samples)
- Laboratory hand shear vane on U100; (6 samples);
- Laboratory CBR (1 sample); and
- One Dimensional Consolidation (6 Samples).

Geochemical samples were submitted to I2 for a range of contamination testing including the following determinands;

- Asbestos Screen (15 samples);
- Soil Organic Matter (8 samples);
- Heavy metals: As, Ba, Be, Cd, Cr, Cr VI, Cu, Pb, Hg, Ni, Se, V, Zn, Mg (15 samples);
- Phenols (15 Samples);
- Total Cyanide(15 Samples);
- Water soluble Boron (15 samples);
- Speciated polyaromatic hydrocarbons (sPAH) (15 samples);
- TPH (CWG Split inc BTEX) (11 samples);
- BRE SD1 Suite for buried concrete (8 samples).

Laboratory testing certificates are presented at Appendix 4.

2.3 Insitu testing

2.3.1 Standard Penetration Testing

Standard penetration testing (SPT) was undertaken to the full depth in the cable percussion boreholes and within the Boulder Clay in the rotary percussive borehole. The results of the SPT testing are presented on the exploratory hole logs and also graphically on drawing 19112 -02 *Insitu Testing SPT N vs Depth* presented later in this Report.

2.3.2 California Bearing Ratio

A total of 10no. insitu CBR tests were completed. These were undertaken on various formations to provide an indication of likely performance of the existing capping materials. Several tests were also undertaken at the upper surface of the underlying subgrade (always Made Ground).

Several locations could not be tested either due to water ingress, instability of the exploratory hole or suspected contamination.

The locations of the CBR tests are shown on drawing 19112-01 and the results are summarised later in this Report, included on the exploratory hole logs and on the photographic record. The CBR test certificates are presented at Appendix 5.

2.4 Groundwater Monitoring

Groundwater strikes and rise were recorded during the investigation.

GD Pickles Ltd. Geoenvironmental Investigation Report Nordic Concept Stage Report Reference 19112.01 April 2020

Large parts of the Site were affected by ponded surface water that had saturated the upper soils and flowed this flowed into some open excavations.

Two groundwater and gas monitoring wells have been installed. The details are shown on the exploratory hole logs. No groundwater level monitoring has been undertaken to date.

2.5 Ground Gas Monitoring

No ground gas monitoring has been undertaken. This is discussed further later in this Report.

3.0 OBSERVED GROUND CONDITIONS

3.1 Ground Model

The exploratory holes were supervised and logged by a geoenvironmental engineer from GDP.

For full descriptions of the strata encountered please refer to the exploratory hole logs presented at Appendix 1 and Photographs of trial pits presented at Appendix 3.

No Phase 1 study has been completed prior to this investigation. As such the development history of the Site is not understood. However, land raising has evidently occurred when historically reclaiming the land from the estuary.

Stratum	Stratum Description			
Site Surface		to base.		
TOPSOIL	Topsoil was only encountered as a thin and poor quality layer in TP01 and TP13.	0.0 to 0.25m		
SITE SURFACING	The surfacing of the Site is variable. The approximate zoning is presented on drawing 19112-05.	To 0.4m.		
	The west of the southern area (west of Shed 26) has a very thin layer of Tarmac (circa 0.05m) over a thin subbase. (TP03 and TP04).			
	The area to the south of Shed 26 has been stabilised in the past. Based on the limited investigation density to date it is apparent that the northern most area has been cement stabilised to varying depth (0.2 to 0.4m) and density. There is no geotextile separator layer and there appears to be a mixing/plough line. (BH01, BH03, TP06 and TP07). Density ranges from hand diggable to needing the excavator hydraulic breaker.			
	To the south and east of this area (BH02, TP05, TP08, TP09 and TP1010) there is a 100 to 150mm layer of stone over a woven geotextile which lies directly upon Made Ground materials.			
	It is conjectured that the 2 southern areas were stabilised before infilling of the drain and that is why there is a different surface construction across the area. There is no other surface indication of where the surfacing changes.			

Table 3.1: Summary Ground Model

	The French drain system appears to cross between these 2 areas.		
	The surfacing beneath most of the Foundry Sand storage area is unknown. A concrete slab was investigated in TP15. There was no surfacing in TP16 and TP13.		
	There is a small triangular area of soft landscaping to the immediate west of Shed 26 (TP01).		
	Yard 6 is surfaced with a variable thickness of weak and badly damaged layer of what is described as lean mix concrete. There is no aggregate or reinforcement in locations investigated. (BH05, BH06, TP19, TP20 and TP24).		
	Areas in the east of the Site are obscured by numerous stockpiles of construction excavation arisings. The stockpiles to the south of the Foundry Sand Area contained sharp materials that prevented safe access with a tyred excavator.		
MADE GROUND General Made Ground /Landfill	Over the majority of the areas investigated the Made Ground below the surfacing was found to comprise what looks to be industrial waste. These materials are predominantly cohesive in nature except where the quantity of anthropogenic materials such as bricks, tiles, kerb stones etc create a dominant granular content. In BH02 a railway sleeper was suspected.	0.8 to Typically 3.0m.	5.0m. 1.5 to
	The upper surface of these soils usually presented as firm to stiff consistency and CBR results for this layer were surprisingly high in most cases. However, with increasing depth the relative density decreased and water ingress was relatively common below 0.9m particularly in the south of the Site. The content of the materials indicated that most was probably construction waste from nearby sites and towns dating to the 1950s and 60s and earlier (based on content/lack of plastics). The materials in Yard 6 (reclaimed land) were more akin to industrial perhaps even household wastes and were notably softer and wetter than elsewhere.		
	The deepest fill (5m) was in TP16 and BH04 in the Foundry Sand Area which are suspected to lie close to the infilled former drain in that area.		

MADE GROUND Chalk Fill	Chalk fill was found in some trial pits located in the Foundry Sand Area and in the area west of Shed 26 (TP13 and TP15). It is suspected that these materials may be common in this wider area of the Site. This layer was found to be saturated in TP03 (west of Shed 26).	1.2m to base not proven in TP03.
TIDAL FLAT DEPOSITS Orange and dark brown slightly gravelly sandy CLAY and SAND	In a number of locations (TP19, TP20, BH05 and BH06) in the north of the Site, in Yard 6, an orange and dark brown variably gravelly sandy CLAY was encountered beneath the Made Ground. There were also bands of running brown SAND. This appears very similar in colour and elevation to the present Humber foreshore estuarine deposits. Similar soils were encountered elsewhere inland at the top of the Made Ground but were thus clearly re-worked. These deposits along with the underlying soft clays and silts are often known regionally as Warp.	3.5 to 3.7m.
TIDAL FLAT DEPOSITS Soft dark grey CLAY/SILT.	Soft brown and grey CLAY and SILT was encountered across the Site below Made Ground. This was distinctive as it contained organic matter, preserved and semi rotted vegetation. This contained less organic matter with depth. These deposits were proven to depths between 9.0 and 10.9m.	9 to 10.9m.
BOULDER CLAY Stiff brown mottled grey gravelly sandy	Encountered as a firm and stiff mid brown gravelly sandy CLAY. The gravel is Chalk. The upper few metres are mottled grey. In this area there are common distinctive SAND and GRAVEL filled channels within the upper boundary	Base proven at 19.3m
CLAY.	between the Boulder Clay and the overlying Tidal Flat Deposits. These channels sometimes contain PEAT. It is likely that such a channel was encountered in RBH1 between 10.5 and 12m. No similar deposits were found in the cable boreholes. Dependant on the position within the channel the incised depths can be substantial leading to locally deeper soft deposits before reaching the stiff Glacial clays. This area (RBH1) is close to the location of the bridge south approach and so should be noted albeit bank seat/main pier piles are likely to extend to the Chalk bedrock.	
SAND & GRAVEL Dense SAND & GRAVEL	A dense SAND and GRAVEL and (apparently) loose brown SAND was encountered beneath the Boulder Clay. This is often referred to as the Chalk Gravels which is misleading as there is varied granular content. The layer is quite thin and the Chalk content often dominated the description. These deposits are often under sub-artesian pressure from the underlying Chalk Aquifer and also in continuity with the Humber. This proved problematic for rotary coring. Implications for pile design are discussed later in this Report.	Proven to 22.5m

WEATHERED		Drayon to 20m			
	It was not possible to recover a core sample from a point	Proven to 28m.			
CHALK	just above the blowing sands repeatedly causing sand				
	ingress between casing and Geobore S . It was thus opted				
	to seal the borehole with drilling mud (bentonite) and				
	pen hole through to prove hard CHALK. Between 22.5				
	and 28m the drilling was relatively easy with returns	8m the drilling was relatively easy with returns			
	comprising Chalk gravel. This is interpreted to be the				
	Chalk Gravels and then putty Chalk commonly				
	encountered in this area.				
HARD CHALK	Below 28m the drilling resistance was very high and	Proven to			
	recovered returns/ chippings were hard Chalk. This is	28.5m.			
	interpreted to be White Chalk.	20.0111			
GROUNDWATER	Surface water was present at many locations and was	observed to have			
OBSERVATIONS	saturated the upper granular fill and formed a perched water body within				
	the Made Ground particularly in the south of the Site. O	ften this could be			
	dug through to drier materials beneath before a second groundwater body				
	was found within the Made Ground perched above the ur	nderlying cohesive			
	Tidal Flat Deposits.				
	In the cable percussion boreholes true groundwater was only found in BH04				
	at 3.6m which was also within Made Ground. This is not unusual when				
	drilling through the TFD and Boulder Clay which are aquicludes. That is why				
	sub artesian pressures often build up beneath these depo	SILS.			
	There are probably locally different groundwater conc	litions within the			
	backfilled former drain that crosses the southern part of th				
		-			
	on how this was infilled it may be acting as a long and c	eep groundwater			
	sump.				

3.2 Observations of Contamination

Arisings obtained during excavations were examined for visual and olfactory indications of contamination.

Across the majority of the Site the Made Ground could be best described as typical of industrial/inert landfill. Although no gross visual (unusual colours or textures) or olfactory (odour) indications of contamination were noted most Made Ground was evidently construction waste arisings with various discolorations and often exhibited a general industrial odour.

No significant visual or olfactory evidence of hydrocarbon contamination was noted during the investigation albeit occasionally there were mild odours. Sometimes the underlying organic soils may have been responsible for the stronger odours.

Some areas comprised clean chalk fill overlying reworked natural or natural organic soils.

The Made Ground soils below Yard 6 were the most noticeably contaminated with a greater quantity of anthropogenic and unusual content such as a sink, hoses and more plastics noted.

A walkover of the stockpiled materials was undertaken to determine the general content (at surface) and in particular to identify any obvious asbestos containing materials (ACMs) or other potentially hazardous content. No immediately obvious ACMs or other potentially hazardous materials were noted during the brief inspection. However, there were varying amounts of tarmac which may be of an age that could contain coal tar.

There are some unidentified slurry materials which were not closely inspected.

Further comprehensive and specific investigation of the waste stockpiles is required including ground conditions beneath them and will require a significant investment in time and laboratory testing.

Establishing the timeline of the stockpiling may be beneficial in determining any effects that this surcharging will have had for engineering design.

GD Pickles Ltd. Geoenvironmental Investigation Report Nordic Concept Stage Report Reference 19112.01 April 2020

4.0 ASSESSMENT OF CONTAMINATION

4.1 Initial Conceptual Site Model

An initial Conceptual Site Model (CSM) has been developed for the Site adopting the Source-Pathway-Receptor approach. The initial CSM is normally developed during the preliminary risk assessment stage (not undertaken) and is used to design the Phase 2 Intrusive Investigations (with regards to contamination). In this instance the Conceptual model has been developed during the Phase 2investigation.

- Sources (S) are potential or known contaminant sources e.g. soil contamination resulting from a former land use;
- Pathways (P) are environmental systems thorough which a contaminant could migrate e.g. air, groundwater;
- Receptors (R) are sensitive environmental receptors that could be adversely affected by a contaminant. e.g. Human End User (longer- term risks) or groundworkers (shorter-term risks), surface or groundwater resources and ecology.

Where a source, relevant pathway and receptor are present, a plausible pollutant linkage is considered to exist whereby environmental harm could occur and a potential environmental liability could be realised.

The site specific potential pollutant linkages have been assessed and used to formulate the initial Conceptual Model for the site presented in Table 4.1.

	POTENTIAL SOURCES					
CSM ID	Detailed Description	Summary Description for CSM				
51	For the purpose of this assessment and in the absence of a Phase 1 Study a historical land reclamation process/landfill site is assumed to be present beneath the majority of the Site. This investigation has confirmed that the fill could be a source of contaminants of concerns including permanent ground gases.	S1: Land reclamation/ Landfill				
<u>\$2</u>	Railway land is a potential source of metals (from use in herbicides), asbestos, PAHs, TPH and PCBs.	S2: Railway Land				
S 3	In addition to the landfill material there are other made ground materials associated with the site (Chalk Fill, reworked Tidal Flat Deposits, imported aggregates etc.).	S3: Made Ground				

GD Pickles Ltd. Geoenvironmental Investigation Report Nordic Concept Stage Report Reference 19112.01 April 2020

<u>5</u> 4	Permanent ground gases originating from the natural ground (Tidal Flat Deposits) present beneath the site. In addition, the shallow natural ground is a potential source of sulphides and sulphates.	S4: Natural geology			
	POTENTIAL PATHWAYS				
CSM ID	Detailed Description	Summary description for CSM			
P1	 Human direct contact uptake pathways; Ingestion of excavated or exposed soils; Inhalation of soil/dust due to dust generation both indoors and outdoors; and Dermal contact with exposed soils or leachates. 	P1: Direct contact – human health			
P2	Vapour inhalation of contaminants in outdoor and/or indoor air via vertical migration of volatile contaminants through unsaturated zone.	P2: Vapour inhalation			
P3	Migration of permanent ground gases into buildings and structures	P3: Ground gas migration			
P4	Horizontal and vertical migration of contaminants within groundwater and perched surface water	P4: Groundwater and surface water migration			
P5	Direct contact of soils/groundwater with construction materials	P5: Direct contact – construction materials			
POTENTIAL RECEPTORS					
CSM ID	Detailed Description	Summary description for CSM			
R1	Construction/maintenance workers.	R1: Construction workers			
R2	End-users. Users of Port, parking and buildings.	R2: End-users			
R3	Construction materials - Buried concrete, buildings and potable water supply pipes.	R3: Construction materials			
R4	Controlled waters – Non productive.	R4: Groundwater			
R5	Controlled waters – Humber Estuary, other water courses (including transmission via surface water drainage).	R5: Surface water			

4.2 Generic Assessment Criteria

In the absence of a complete published set of screening values derived by the Regulators using the new CLEA Framework, the assessment refers to the following in priority of use order:

The LQM/CIEH S4ULs for Human Health Risk Assessment. Land Quality Press, 2015. Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3222. All rights reserved.';

- The Soil Guidance Values (SGVs) published by the EA;
- Former SGVs for which no updated SGV has been published;
- The 2009 Chartered Institute of Environmental Health (CIEH)/Land Quality Management (LQM) Generic Assessment Criteria (GAC);
- The guidance values produced by the Environmental Industries Commission (EIC), the Association of Geotechnical and Geoenvironmental Specialists (AGS) and Contaminated Land: Application in Real Environments (CL:AIRE) in December 2009; and
- In house Generic Screening Values (HH-GSVs) derived by the Consultant and other non UK values where considered relevant.
- Consideration has been given to Category 4 Screening Levels as it is likely given recent government support that these will be considered by Local Planning Authorities during assessment of contaminated land.
- Dutch target and Intervention Values.

For the purpose of this assessment, the analytical results have been assessed against guidance values for a *Commercial* land-use. If external areas are to be used for public access then a more sensitive land use may be appropriate such as Public Open Space.

The S4ULs currently exclude Lead, therefore the Defra approved Category 4 Screening Levels (C4SLs) have been adopted.

Where sufficient sampling has occurred and in cases where contaminants are present in one or more samples in a specific averaging area, above their respective Tier 1 GAC, the results may be subject to statistical assessment in accordance with current best practice to establish if the true mean (upper 95th percentile) is above the screening criteria. If so, then further consideration is given to the risk presented by the contaminant of concern. This may include further detailed quantitative risk assessment and/or further sampling and testing.

No groundwater assessment has been undertaken or is required at this time.

4.3 Geochemical Test Results

Thirteen soil samples, representative of the main soil types encountered, were analysed for Soil Organic Matter (SOM). SOM ranges from 0.6% to 7%. The lowest was for cement stabilised materials and the highest for organic clay. The majority of values were between 2 and 3% and the mean average was 3.6%. Analytical results will be conservatively screened in the first instance against a SOM of 1% where applicable to assessment for organics.

4.3.1 Commercial Land Use

The laboratory analytical results from the investigation are presented at Appendix 3.

The findings of the geochemical analysis are presented in Table 4.3.1 below. The GAC for a Commercial land use has been applied.

Contaminant	Units	Max	GAC	No of exceedances
Metals / Inorganics				
Arsenic (total)	mg/kg As	18	640*	0
Barium (total)	mg/kg Ba	240	22000#	0
Beryllium (total)	mg/kg Be	3.4	12*	0
Boron (water soluble)	mg/kg B	13	240000*	0
Cadmium (total)	mg/kg Cd	0.6	190*	0
Chromium (total)	mg/kg Cr	150	8600*a	0
Chromium (VI)	mg/kg CrVI	<4.0	33*	0
Copper (total)	mg/kg Cu	100	68000*	0
Lead (total)	mg/kg Pb	92	2330+	0
Mercury (total)	mg/kg Hg	<0.3	25.8*b	0
Nickel (total)	mg/kg Ni	100	980*	0
Selenium (total)	mg/kg Se	5.7	12000	0
Vanadium (total)	mg/kg V	77	9000*	0
Zinc (total)	mg/kg Zn	320	730000*	0
Speciated PAH				
Naphthalene	mg/kg	29	190*	0
Acenaphthylene	mg/kg	8.9	83000*	0
Acenaphthene	mg/kg	26	84000*	0
Fluorene	mg/kg	39	63000*	0
Phenanthrene	mg/kg	230	22000*	0
Anthracene	mg/kg	63	520000*	0
Fluoranthene	mg/kg	380	23000*	0
Pyrene	mg/kg	340	54000*	0

Table 4.3.1: Comparison of soil samples to relevant GAC for Commercial land use

GD Pickles Ltd. Geoenvironmental Investigation Report Nordic Concept Stage Report Reference 19112.01 April 2020

mg/kg	190	170*	1 (TP24, D1, 0.4-0.7)
mg/kg	160	350*	0
mg/kg	150	44*	1 (TP24, D1, 0.4-0.7)
mg/kg	96	1200*	0
mg/kg	150	35*	1 (TP24, D1, 0.4-0.7)
mg/kg	76	500*	0
mg/kg	22	3.5*	1 (TP24, D1, 0.4-0.7)
mg/kg	85	3900*	0
mg/kg	<0.001	7900#	0
mg/kg	<0.001	27*	0
mg/kg	<0.001	56000*	0
mg/kg	<0.001	5700*	0
mg/kg	<0.001	5900* ^d	0
mg/kg	<0.001	5900*d	0
mg/kg	<0.001	26000*	0
mg/kg	<0.001	56000*	0
mg/kg	<0.001	3500*	0
mg/kg	2.2	16000*	0
mg/kg	5.2	36000*	0
mg/kg	27	28000*	0
mg/kg	120	28000*	0
mg/kg	150	28000*	0
mg/kg	<0.001	3200*	0
mg/kg	<0.001	7800*	0
mg/kg	<0.001	2000*	0
mg/kg	3.7	9700*	0
mg/kg	6.0	59000*	0
	mg/kg mg/kg </td <td>mg/kg 160 mg/kg 150 mg/kg 96 mg/kg 150 mg/kg 76 mg/kg 22 mg/kg 85 mg/kg <0.001</td> mg/kg <0.001	mg/kg 160 mg/kg 150 mg/kg 96 mg/kg 150 mg/kg 76 mg/kg 22 mg/kg 85 mg/kg <0.001	mg/kg 160 350* mg/kg 150 44* mg/kg 96 1200* mg/kg 150 35* mg/kg 76 500* mg/kg 22 3.5* mg/kg 85 3900* mg/kg 22 3.5* mg/kg 20.001 7900# mg/kg <0.001

TPH Aliphatic EC16-EC35	mg/kg	58	1600000*	0
TPH Aliphatic EC35-EC44	mg/kg	200	1600000*	0
Asbestos screen	%		Presence ^e	0

Copyright Land Quality Management Limited reproduced with permission: publication number S4UL3322

* LQM/CIEH GAC for commercial land use scenario based on a sandy loam soil and 1% SOM

EIC/AGS/CL:AIRE GAC for commercial land use scenario and 1% SOM

+ C4SL Commercial land use scenario based on a sandy loam soil. There is neither an S4UL nor a EIC/ AGS/ CL:AIRE/ GAC available for lead. In the absence of a GAC based on minimal risk, the C4SL for lead has been used. It is recognised that this is based on a "low level of toxicological concern" rather than on a minimal risk level. However, it is considered appropriate for use under planning as an initial screen.

- a) Based on GAC for trivalent chromium. All samples analysed for total chromium have also been analysed for hexavalent chromium-no exceedances of the laboratory limit of detection have been recorded, and therefore it is considered appropriate to compare the total chromium concentrations to the GAC for trivalent chromium.
- b) Based on the elemental mercury GAC as lowest GAC. GAC exceeds vapour concentration so vapour saturation limit has been adopted.
- c) It is understood that EFSA have recently reevaluated nickel and that this is likely to have the effect of reducing the HCV, and hence the assessment criteria. However it is noted that even the maximum concentration is significantly below the current S4UL.
- d) All xylene isomers should be compared to the lowest of the three GACs, which, in this case is p xylene.
- e) There currently is no published screening criteria for asbestos, however the limit of detection (0.001%) will be used as a preliminary screen.

Following the assessment against Commercial GAC the Made Ground soils sampled in TP24 (Yard 6) were found to contain elevated PAH. No other exceedances of GAC for a Commercial land use have been detected to date.

4.3.2 Asbestos in Soil

No asbestos was detected in the 15no. samples tested from various depths. No visible ACM was noted during the investigations to date.

4.3.3 Leachate Analysis

No significant contamination was identified therefore no leachate analysis has been undertaken to date.

There are no controlled waters considered to be at risk in proximity to the Site. Further assessment may be needed as part of piling risk assessment at a later stage wherein a pathway between the shallow Made Ground sols and the Chalk Aquifer may be created.

4.4 Risk Evaluation

The assessment of risk assumes no specific remediation measures but does take account of obvious pathway disruption due to the existence of hardstandings, building footprints or existing Site layout.

For each potential pollutant linkage identified within the Conceptual Model the potential risk has been evaluated for potential receptors using the Qualitative Risk Assessment based on the probability of the pollution event and the severity it poses to Site users and the environment. The risk assessment methodology is presented in Appendix 6.

Following the limited Phase 2 investigation a Conceptual Model is now presented in Table 4.4 below.

Table 4.4: Conceptual Site Model CSM

Potential Source	Potential Pathway	Potential Receptor	Consequence	Probability	Risk	Comments	
S1: Land	P1: Direct contact –	R1: Construction workers	Mild	Likely	Moderate/	Direct contact pathways would be active	
reclamation/Land	human health				Low	throughout the construction phase of the	
fill						project, however, typical mitigation measures	
S2: Railway Land						such as personal protective equipment (PPE)	
S3: Made ground						would be used to help mitigate the risk.	
		R2: End-users	Mild	Likely	Moderate/	Tested soils are suitable for use in a	
					Low	Commercial land-use except for a single	
						location TP24, Yard 6. Contamination may be	
						present elsewhere. The potentially	
						contaminated soils are currently covered by	
						hardstanding or other surfacing that prevents	
						contact with the end-users. The proposed	
						development will include similar surfacing	
						and/or engineered construction.	
	P2: Vapour inhalation	R2: End-users	Mild	Likely	Moderate/	No source of vapours has been identified	
					Low	during the Phase 2 investigation.	
	P4: Groundwater	R4: Groundwater	Mild	Likely	Moderate/	Surface water was present in many areas.	
	migration	R5: Surface water			Low	Shallow perched groundwater was	
						encountered during trial pitting. No significant	
						groundwater encountered in Tidal Flat	
						Deposits or Boulder Clay. Sub artesian	
						groundwater was encountered below Boulder	
						Clay. Cohesive strata form significant	
						aquiclude protecting the Chalk Aquifer. There	
						are no potentially active pollutant linkages to	

						controlled water receptors associated with the Site.
	P5: Direct contact construction materials	R3: Construction materials	Medium	Likely	Moderate	Given the past uses of the site it is considered that there could be the potential for contaminants to be present in the ground that presents a risk to future construction materials (e.g. buried concrete and buried water pipes).
S1: Land reclamation/Land fill S3: Made ground S4: Natural geology	P3: Ground gas migration	R2: End users and R3: Construction materials	Medium	Likely	Moderate	The Ste is underlain by made ground comprising mixed cohesive, granular and construction wastes to a maximum depth of 5m begl. Organic natural strata could be potential sources of permanent ground gas. No gas monitoring undertaken to date. Gas monitoring should be undertaken at detailed design stage. Permanent buildings may require protection from hazardous ground gases.

5.0 REMEDIATION PROPOSALS

5.1 Outline Remediation Requirements

The detail of the proposed development levels are not known at this time. However, it is unlikely that they will be lower than existing.

These recommendations are made on the basis of the investigations undertaken to date. Further contamination issues may arise construction phases and further assessment may then be required.

The findings of intrusive investigations and risk assessments indicate that all contaminants tested for are within acceptable limits for a Commercial land use except for at 1 location (TP24 in Yard 6). Soils at this location will be covered by hard standing and so no remediation is required.

No ground gas monitoring has been undertaken to date. This would very likely encounter elevated ground gases due to the nature of the Made Ground throughout the Site and the presence of organic natural soils at shallow depth. A period of ground gas monitoring should be undertaken once development proposals are finalized. At this time it would be prudent to assume that gas protection is recommended to be installed in ground floors to any buildings that are in contact with the ground or otherwise have no ventilation beneath them to prevent ground gases entering the accommodation.

If the scheme requires planning permission the LPA may require a Remediation Method Statement to specify the gas protection requirements and other issues pertinent to the development of a brownfield site.

Importing Soil

It is expected that any soils for landscaping (if proposed) will need to be imported. The existing limited topsoil soil is suitable for re-use but is thought to be site generated from years of self seeded vegetative matter. Topsoil should be tested and proved suitable for its intended use before placement. This may need to be screened against Commercial land use or Public Open Space land use depending on the final design.

Imported aggregates may need to be validated as suitable for use (particularly if they are a recycled product). Assuming a commercial end use the geochemical suitability should be based on generic assessment criteria for a Commercial land use as presented in Table 4.3.1.

Construction Phase Risks

At construction phase any small risk posed by the soils on Site to ground workers can be adequately and economically mitigated by adopting best practice standards of personal hygiene with appropriate levels of personal protective equipment (PPE) provided.

Unexpected Contamination

There remains the possibility of encountering unexpected contamination during the construction Phase. The Construction Phase Health and Safety Plan should contain a procedure for assessment of any unexpected contamination particularly asbestos (albeit non has been found to date).

5.2 Other Development Considerations

5.2.1 Buried Water Supply

Only low concentrations of hydrocarbon contamination has been identified to date and there may not be any requirement to provide upgraded supply at this time. However, elevated phenols may be of concern. Connections may cross land not investigated and so if any evidence of contamination, particularly, hydrocarbons is identified along the service route then further assessments may be required.

For any new adoptable connections the Water Authority usually require analysis of soils in the areas where new supplies are to be installed in accordance with their in-house or UKWIR guidance. This guidance, as for most utilities companies, is based upon the UKWIR Assessment.

In practice the costs of undertaking the necessary analysis is high and opting to install basic barrier pipe such as 'Protectaline' is normally only a small uplift above standard materials and provides cost certainty. The exception may be where a very long supply length is required and further assessments to prove no special requirements may be of commercial benefit. New services should always be placed in a dedicated trench backfilled with inert aggregate.

5.2.2 Materials Management and Waste Disposal

The waste classification of the soils has not been formally undertaken as part of this investigation. Where it is proposed to discard soils from Site it is recommended that the chemical test results (including WAC testing) are forwarded to a waste disposal contractor or landfill operator to establish the waste classification.

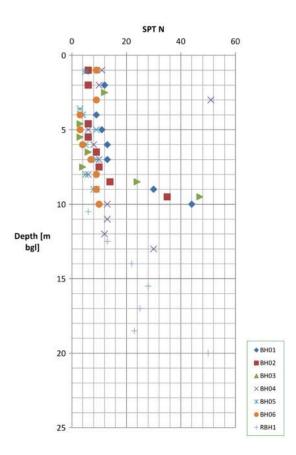
The following applies to uncontaminated natural soils arisings (excludes the made ground at this Site). In accordance with the Regulations *"uncontaminated soil and other naturally occurring material excavated in the course of construction activities where it is certain that the material will be used for the purposes of construction in its natural state on the Site from which it was excavated"*, is excluded from waste regulation by the Waste Framework Directive (2008). Hence, provided there is a planned use for excavated soils they can be re-used on Site without a waste permit or exemption provided they meet the required engineering specification.

However, any soils that cannot be accommodated on Site within the works are surplus to requirements and a 'waste' under the Regulations and should only be disposed at a facility or a Site licensed to accept the materials.

If after classification the surplus soils are to be deposited in an inert or hazardous landfill, then allowance should be made for Waste Acceptance Criteria (WAC) testing of the surplus materials to confirm compliance with the limits for these materials.

Five samples of Made Ground from varying depths were submitted for WAC Testing. The results indicated that although contamination levels were generally low based on leachates all samples would be accepted at as Stable Non- reactive HAZARDOUS Waste in a non-hazardous landfill. The Made Ground is unlikely to classify as Inert.

Under the Duty of Care Regulations, the producer of the waste is also obliged to ensure that all wastes are disposed of appropriately.


6.0 ENGINEERING ASSESSMENT

6.1 Geotechnical Material Properties

6.1.1 Insitu Testing

Standard Penetration Tests (SPT) were undertaken in all of the boreholes.

SPT N values are included on the exploratory hole logs presented at Appendix 1, presented on Drawing 19112-02 *Insitu Testing SPT N vs Depth* and summarised below;

6.1.2 Classification Testing

Plasticity testing was undertaken on 19no. selected samples of cohesive soils at depths ranging from 0.9m to 13m. Plasticity index, Ip, ranges between 12 and 55%. Lower plasticity was associated with the Boulder Clay and the higher plasticity soils were the organic clays and silts which also had high moisture contents.

The laboratory test results are presented at Appendix 4.

GD Pickles Ltd. Geoenvironmental Investigation Report Nordic Concept Stage Report Reference 19112.01 April 2020

6.1.3 Geotechnical Parameters

A number of corrections are required to SPT N values before use in design.

The most significant correction is for Energy Ratio (ER_M). The value of ER_M is specific to the particular SPT test equipment used. In the absence of calibration certificates for the particular equipment used CIRIA 143 recommends ER_M =73%. The calibration certificate for the cable percussion rig used on this Site is ER_M =64%.

A further correction, λ , is applied to account for the energy loss within the drill rods. This correction factor ranges from 0.75 for 3m and less increasing to unity at 10m.

The SPT N value can be corrected in granular deposits to allow for overburden effect. However, at 1m bgl a correction factor, C_N (after Seed et al), of 1.0 can be applied to SPT $(N')_{60}$. At 3m C_N is negligible. C_N should never exceed 1.5. No soils considered to be granular were encountered in the upper 18m during this investigation so no corrections have been applied.

6.1.4 Undrained Shear Strength

Shear strength of the cohesive formation can be tentatively estimated from Stroud's relationship between SPT (uncorrected) and Plasticity Index. Empirical relationship was originally developed for stiff glacial soils and can give a useful indication of insitu undrained shear strength for comparison with other field measurements (such as hand shear vanes) and laboratory testing.

For medium to high plasticity soils, such as determined for this Site, this relationship can be taken as undrained shear strength, Cu, is equivalent to approximately 4.5 to 7 times the corrected SPT N value (after Stroud, 1989). A mid range value of f1 = 5 has initially been used to estimate undrained shear strength with depth and the results are plotted graphically on drawing 19112-03. These are only indicative and more detailed plots could be produced assigning more accurate f1 values to each stratum based on plasticity index.

Laboratory hand shear vane tests were undertaken on undisturbed samples at depths ranging from 1.0m to 3.0m. These targeted the upper sandy CLAY and the top of the underlying soft organic Clay/Silt. The undrained shear strength ranged between 13 and 76 kPa. The lowest value was in a sample described as reddish brown organic CLAY with woods (BH03, 1.70 - 2.15m). Samples of the brown and brown sandy CLAY recorded values of between 20 and 76 kPa.

In considering the various lines of evidence, lab testing and empirical correlation with SPT a characteristic value for undrained shear strength has been tentatively assigned to the various cohesive strata as follows;

STRATA	Typical Description	Undrained Shear Strength, Cu [kPa]	Comments
MADE GROUND	Variable, predominantly cohesive.	Variable.	
UPPER TIDAL FLAT DEPOSITS	Orange brown sandy CLAY	45	
LOWER TIDAL FLAT DEPOSITS	Soft grey (sometimes organic) CLAY	20 kPa	
BOULDER CLAY	Stiff brown gravelly sandy CLAY	>150	Hand shear vanes attempted on undisturbed rotary core samples of Boulder Clay were beyond range of shear vane scale.

6.1.5 One Dimensional Consolidation

A total of 6no. one dimensional consolidation tests were undertaken on samples collected from depths between 1 and 3m to determine the likely compressibility of the Upper and Lower Tidal Flat deposits at shallow depth where the greatest increase in surcharge pressure is expected.

The proposed development loadings were not known so a range of applied pressures between 20 and 160 kPa was scheduled with a single stage unloading to 80 kPa. One dimensional consolidation tests also include measurement of dry and bulk density before and after the test. The results are presented in Appendix 4.

Further assessment for consolidation settlement magnitude and duration can be undertaken dependent on the design applied pressure and thus the appropriate Mv value(s) selected for design.

As for undrained shear strength Mv can also be estimated from SPT N using Stroud's relationship. This has been undertaken initially assuming an f2 value of 0.45 (Table 1.5, Tomlinson 7th Edition). The results of Mv vs Depth have been presented on drawing 19112-04.

6.4 Discussion of Foundation Issues

6.4.1 Bearing Capacity and Settlement

Structural details of the proposed development are not known at present so the foundation loads are not available at time of writing.

Made Ground was found across the whole Site and was variable in depth, consistency, relative density and groundwater levels. This strata has unknown depositional and stress history and unpredictable settlement potential. This strata is not suitable to support traditional shallow foundations. However, some areas are more competent and were described as very dense such as the Chalk fill as encountered in TP15 and TP03. Where such fills are present and not underlain by weak deposit it may be possible to support lightly loaded structures such as portable or temporary buildings that are not sensitive to moderate differential settlements.

Where the firm orange brown sandy CLAY is encountered at a depth where traditional foundations can be constructed then it is plausible that lightly loaded structures or raft foundations could be supported. Based on a characteristic Cu of 45 kPa a safe bearing capacity (FOS 3.0) would be in the order of 75 kN/m². These deposits may have a higher shear strength and so it would be prudent to check this at any specific location where a building is proposed to derive optimum parameters. Foundations constructed in this layer may create a pressure bulb that applies increased stress to the underlying soft Clay. In this instance an assessment would be required to determine whether the underlying materials would support the applied pressure and whether settlement then became an issue.

The Soft Clay is not suitable to support traditional foundations due to its low shear strength and compressibility.

The proposed bridge foundations and approaches will be piled. Lessons learnt elsewhere within the Docks indicates that driven piles are likely to encounter difficulties penetrating the dense granular deposits below the Boulder Clay. The dense deposits can be quite thin and are underlain by weak Chalk which can lead to longer-term settlement of piles and/or pile groups that end bear onto the dense granular deposits.

During this investigation a dense SAND and GRAVEL and (apparently) loose brown SAND was encountered beneath the Boulder Clay. This is often referred to as the Chalk Gravels which is misleading as there is varied granular content. The layer is quite thin and the Chalk content often dominated the description. These deposits are often under sub-artesian pressure from the underlying Chalk aquifer and also in continuity with the Humber. The latter often means that severity of blowing conditions vary and are connected to tidal fluctuations which can change daily. The blowing conditions result in sands flowing up the borehole and if not noted

any SPT test undertaken without counterbalancing the subartesian pressure results in a misleading low N value. Often this can occur even if water is added to the borehole greater than the calculated minimum. This is a common oversight and can give the false impression that driven piles will be successful in reaching the underlying Chalk. These conditions proved problematic for rotary coring.

It was not possible to recover any further rotary core samples from a point just above the blowing sands. Sand ingress to the drill string causing repeated jamming. It was thus opted to seal the borehole with drilling mud (bentonite) to prevent further ingress of blowing sands and open hole through to prove hard CHALK. Between 22.5 and 28m the drilling was relatively easy with returns comprising Chalk gravel. This is interpreted to be the Chalk Gravels and then putty Chalk commonly encountered in this area. Below 28m the drilling resistance was very high and recovered returns/ chippings were hard Chalk. This is interpreted to be White Chalk (hard bedrock).

It was not possible to undertake any SPT tests in the Chalk.

On the basis of the findings of the deeper borehole it is expected that bored or augerd piles would need to extend to at least 28m. This is consistent with previous experience in the area. BGS borehole records close to the Site record hard White Chalk rock head from between 25 and 33m. (BGS Logs are included at Appendix 2). Rock head tends to deepen towards the estuary.

6.5 Pavement Design

South of the Site

The majority of the south of the Site appears to have had ground treatment to support a previous use as car storage. There is an area which appears to have been cement stabilised and a larger area where a stone layer overlies a woven geotextile. The area to the west of Shed 26 is surfaced with a thin layer of Tarmac and sub base above a subgrade of generally more compact Made Ground including dense Chalk fill. All areas are underlain by variable Made Ground. Drainage is installed in some areas but large areas were inundated with surface water at the time of the investigation. An infilled former drain channel crosses this area of the Site.

The area of the foundry sand storage operation was largely obscured but is at least in part covered by a concrete slab with subbase below. The Made Ground in this area appears compact and contains some Chalk fill.

North of the Site

The area of Yard 6 appears to be surfaced with a variable thickness of unreinforced, aggregate free lean mix concrete sitting directly on highly variable and often soft fill. Large settlements of the surface have occurred in the past probably due to stockpile surcharges. The existing surfacing would not have resisted any deflections, the surface water system is broken and no longer effective. Due to the large vertical deflections it may be necessary to completely replace this hard standing. It would break up easily and crush to a usable fill grading albeit a large quantity of fines would be expected.

CBR testing was undertaken at various levels within the existing pavement construction and Made Ground subgrade. The results of the CBR testing including depth are included on the Photographic record for ease of reference and presented at Appendix 3. The Laboratory Certificates are presented at Appendix 5.

The existing capped and/or hard surfaced areas are relatively flat and with the exception of the south east are unrutted. This suggests that the existing improved ground will form a good capping layer above which the new construction can be designed. Removal of the existing surfacing would be problematical and reveal a subgrade of Made Ground that will be very difficult to work on.

A large area in the east is currently obscured by stockpiled materials as discussed earlier in this Report. Further investigation is likely to be required in this area.

The conjectured extent of the various existing pavement construction has been presented on drawing 19112-05. This is only an initial assessment based on the limited investigations to date.

6.6 Design of Buried Concrete

An assessment of the chemical conditions beneath the Site has been undertaken for the purposes of designing buried concrete in accordance with BRE Special Digest 1:2005 *Concrete in aggressive ground*.

The Site has been classified as a 'brownfield location'.

Mobile groundwater conditions have been assumed.

Eight samples of the natural and Made Ground soils were tested for BRE SD1 Suite. The 2:1 water soluble sulphate results range between 98 and 3130 mg/l. 4 results are >500 mg/l. The highest values appear to be associated with the cement stabilised materials.

The corresponding pH values range between 7.0 and 10.2. The design pH is taken as the lowest value 7.0.

Made Ground	Water Soluble Sulphate as SO4 (mg/l)	рН
Minimum	98	7.0
Maximum	3130	10.2
Mean Average	1068	9
Total No. Tests	8	8

Table 6.6: Summary Data for Buried Concrete Design

Adopting the assumptions outlined above the Site is on average classified as Design Sulphate Class DS-2. The Aggressive Chemical Environment for Concrete (ACEC) Class is AC2.

This is an average assessment. Foundation and/or structure specific assessments should be undertaken at detailed design stage.

6.7 Excavation Stability

Excavation stability was generally good during the investigations.

Groundwater was encountered as shallow perched bodies and in saturated near surface granular deposits.

Groundwater conditions are recorded on the logs and discussed earlier in this Report.

6.8 Drainage and SuDS

The cohesive nature of the Made Ground and natural soils and high groundwater indicates that soakaways will not be effective.

Construction of new drainage will present challenges with regards to control of groundwater and disposal of excavation arisings.

7.0 CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary of Site Description

The Site is split into several land parcels as described earlier in this Report. The various surface conditions are summarized on drawing 19112-05.

Some areas were obscured by stockpiles or otherwise inaccessible.

7.2 Summary Ground Conditions

Below the various surface treatments a layer of Made Ground was found across the whole Site. This was variable and in most areas appeared to be imported construction /industrial waste probably dating to the time when the land was originally reclaimed. The maximum depth of Made Ground was 5.0m but it was generally between 0.8 and 3m in depth. There was often perched groundwater within the Made Ground.

Below the Made Ground natural strata of the Tidal Flat Deposits are found. The shallow soils often comprised a firm orange brown sandy CLAY and extended to depths of up to 3.0m. Below these soils were the soft grey Clays and Silts which are variably organic.

The Boulder Clay is encountered from circa 10m and comprises a stiff brown gravelly sandy CLAY. In RBH1 this was proven to 18.5m.

Beneath the Boulder Clay dense SAND & GRAVEL was initially encountered and then a thin layer of blowing sands. Below this strata interpreted to be the Chalk Gravels, Putty Chalk and hard White Chalk were encountered the latter encountered at 28m.

Groundwater was encountered a perched water bodies in the Made Ground across the Site.

No notable groundwater table was encountered in Tidal Flat Deposits or the Boulder Clay.

Groundwater under sub artesian pressure was encountered at 18m in RBH1.

Surface water ponding occurs across the south, east and north of the wider site.

GD Pickles Ltd. Geoenvironmental Investigation Report Nordic Concept Stage Report Reference 19112.01 April 2020

7.3 Summary Contaminated Land Status

Testing indicates that, except in 1 location in Yard 6, all contaminants are at concentrations that do not exceed GAC for a Commercial Land-use. This is surprising given the nature of some of the fill materials.

No asbestos containing materials were noted during the investigations. No asbestos was detected in the samples tested.

Based on the limited dataset available, there is currently no identified requirement for remediation. Contamination including asbestos may be present in areas not investigated. Imported materials will need to be suitable for a Commercial Land-use as described earlier in this Report. Topsoil may need to be suitable for either Commercial land use or Public Open Space, depending on final designs.

7.4 Engineering Recommendations

The Made Ground is generally considered unsuitable as a bearing strata.

The firm clays of the upper TFD may be suitable for lightly loaded foundations although the presence of the soft and compressible soils immediately below would require consideration in design.

Piled foundations for large loads would need to be constructed to depths of approximately 28 to 30m along with any required rock socket.

Driven piles are unlikely to penetrate the dense sands and gravels below the Boulder Clay. Local knowledge and BGS records indicate that the Boulder Clay can also contain horizons of Sands Gravels. Incised and deep channels can also be cut into the top of the Boulder Clay which often contain PEAT. This could prove problematic for short piles into the Boulder Clay.

Existing engineered pavements and ground treatments are likely to be suitable as capping or considered to be a strong subgrade. Wherever possible the existing surfacing should be retained as the underlying Made Ground in much of the Site would cause difficulties. The unusual surfacing in Yard 6 may need to be removed and reprocessed due to significant changes in level in this area due to subsidence.

Installation of new drainage and any other excavations may require onerous groundwater control dependent on location on the Site. However, excavation stability was generally very good.

The chemical conditions in relation to the design of buried concrete indicate that on average DS-2, ACEC-AC2 will apply. However, structure specific investigations are recommended as locally higher protection may be required.

7.5 Recommended Additional Ground Investigation

Obtaining archive records for the various site preparation, particularly in the south would be beneficial to detailed engineering assessment.

The stockpiles across the east of the Site prevented access for investigation. The stockpiles and the ground conditions beneath them will need investigation using large tracked excavation plant.

Further GI for contamination may be required depending on development proposals.

A ground gas assessment may be required depending on the proposed building type and design.

An additional deep borehole may be required at the north of the bridge. However, the underlying ground conditions are unlikely to change significantly from this encountered in RBH1. The findings of this investigation are consistent with what was expected based on nearby BGS records and experience elsewhere in the Port. Any further investigations may best be placed upon the piling contractor.

8.0 LIMITATIONS

8.1 General

GD Pickles Ltd (GDP) have prepared this report solely for the use of HBPW LLP. Should any third party wish to use or rely upon the contents of the report, written approval must be sought from GDP; a charge may be levied against such approval.

GDP accepts no responsibility or liability for the consequences of this document being used for any purpose or project other than for which it was commissioned or the consequences of this document being used by any third party with whom an agreement has not been executed.

The Client should be aware that property development carries risk and that unidentified development abnormals should be anticipated particularly on brownfield sites with regard to in-ground risks such as contamination, asbestos, waste and underground obstructions/made ground. This Report provides an assessment of the potential and actual ground conditions found based upon the available information and in the context of the scope of works performed. It does not provide a flood, drainage, asbestos, ecological, mining, archaeological or legal assessments or provide advice on other technical matters which may be appropriate when considering site ownership and development. The Client should satisfy itself that it has adequate information on which to make its own decision with regards the commercial and legal merit of acquiring and developing the site. All development risk rests with the developer and owner. GDP will employ all reasonable endeavours to assist the Client manage and mitigate those risks, however, no liability is accepted by GDP for any loss, damages, or consequential or third party losses which may be suffered by the Client from the inappropriate use or misinterpretation of the content of this report and all liability is limited to those set out in our terms and conditions at the time of instruction.

8.2 Phase I Desk Studies and Preliminary Risk Assessments

The work undertaken in producing this report comprised a study of available in-house and third party documented information from a variety of sources (including the Client), together with (where appropriate) a brief walk over inspection of the site and meetings and discussions with relevant authorities and other interested parties. The assessments and opinions given in this report rely on such information and activities and are only relevant to the purpose for which the report was commissioned. Any information reviewed should not be considered exhaustive and has been accepted and used in good faith as providing accurate and representative data pertaining to site conditions. Should additional information become available which may affect the opinions expressed in this report, GDP reserves the right to review and if necessary modify the opinions accordingly. It should be noted that any risks

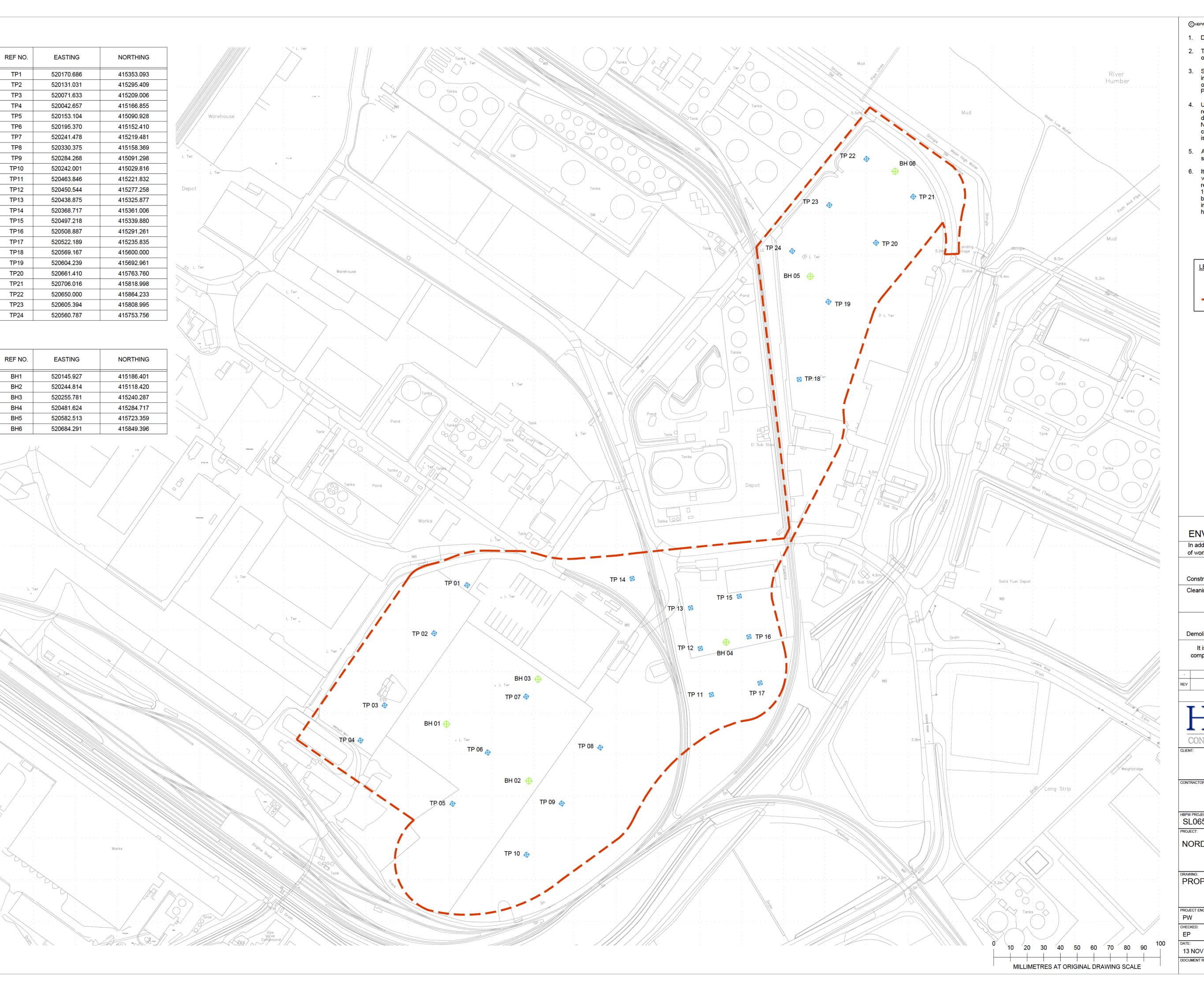
identified in a Phase 1 report are perceived risks based on the information reviewed; actual risks can usually only be quantified following a physical investigation of the site.

8.3 Phase II Intrusive Geotechnical and Geoenvironmental Investigations

The investigation of the site has been carried out to provide sufficient information concerning the type and significance of contamination and or geotechnical characteristics, and ground and groundwater conditions to provide a reasonable assessment of the environment risks together with engineering and development implications. If costs have been included in relation to site development professional cost advice should be sought.

The exploratory holes undertaken, which investigate only a small volume of the ground in relation to the size of the site, can only provide a general indication of site conditions. The opinions provided and recommendations given in this report are based on the ground conditions apparent at the site for each of the exploratory holes. There may be exceptional ground conditions elsewhere on the site which have not been disclosed by this investigation and which have therefore not been taken into account in this report. Whilst exploratory testing is intended to gain an accurate representation of the site, the very nature of sampling and testing is such that it cannot ensure that all localised conditions are detected.

The comments made on groundwater conditions are based on observations made at the time the site work was conducted. It should be noted that groundwater levels will vary owing to seasonal, tidal and weather related effects. The scope of the investigation was selected on the basis of the specific development proposed by the Client and may be inappropriate to another form of development or scheme.


The risk assessment and opinions provided take in to consideration, inter alia, currently available guidance relating to acceptable contamination concentrations; no liability can be accepted for the retrospective effects of any future changes or amendments to these values.

Drawings

GD Pickles Ltd. Geoenvironmental Investigation Report Nordic Concept Stage Report Reference 19112.01 April 2020

CHBPW CONSULTING

<u>NOTES</u>

1. DO NOT SCALE

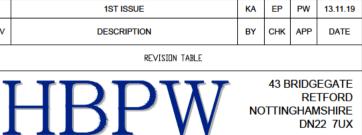
- This drawing is to be read in conjunction with all other relevant drawings.
- Should there be any conflict between the details indicated on this drawing and those indicated on other drawings the Engineer should be informed PRIOR to construction on site.
- 4. Until technical approval has been obtained from the relevant Authority, it should be understood that all drawings and details issued are PRELIMINARY and NOT FOR CONSTRUCTION. Should the contractor commence site work prior to approval being given, it is entirely at his own risk.
- 5. All dimensions are in millimetres unless otherwise stated.
- 6. It is the responsibility of the contractor to execute the works at all times in strict accordance with the requirements of the Health And Safety At Work Act 1974 and CDM regulations 2015. The contractor will be deemed to have allowed for full compliance, including full liaison with the Principal Design, within his rates.

LEGEND X Trial Pits + Plate Bearing test

 \oplus Borehole to 10m - Site Development Boundary

APPROVAL

HEALTH, SAFETY AND ENVIRONMENTAL INFORMATION


In addition to the hazards/ risks associated with the types of work detailed on this drawing please note the following:

Construction:

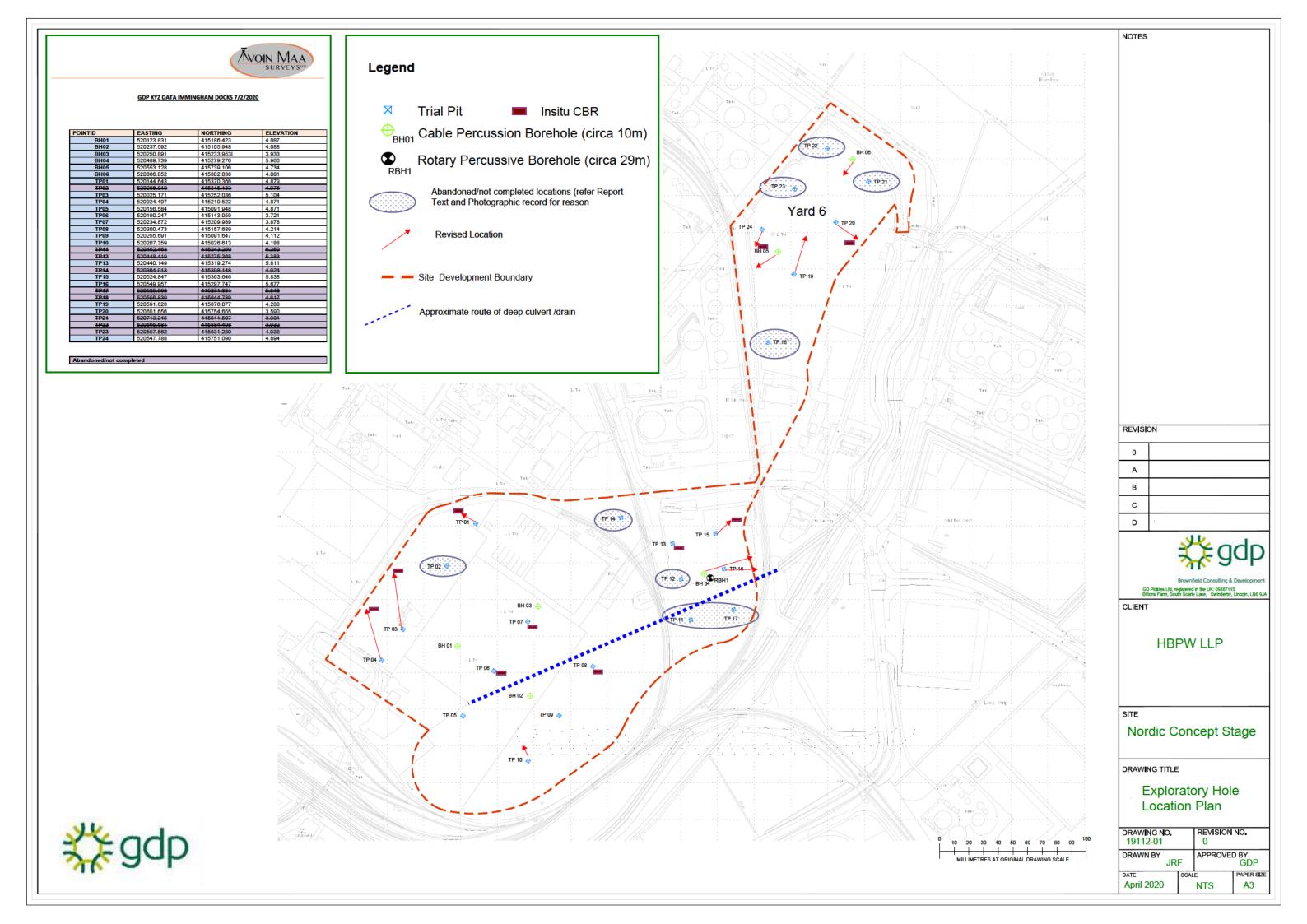
Cleaning / Maintenance:

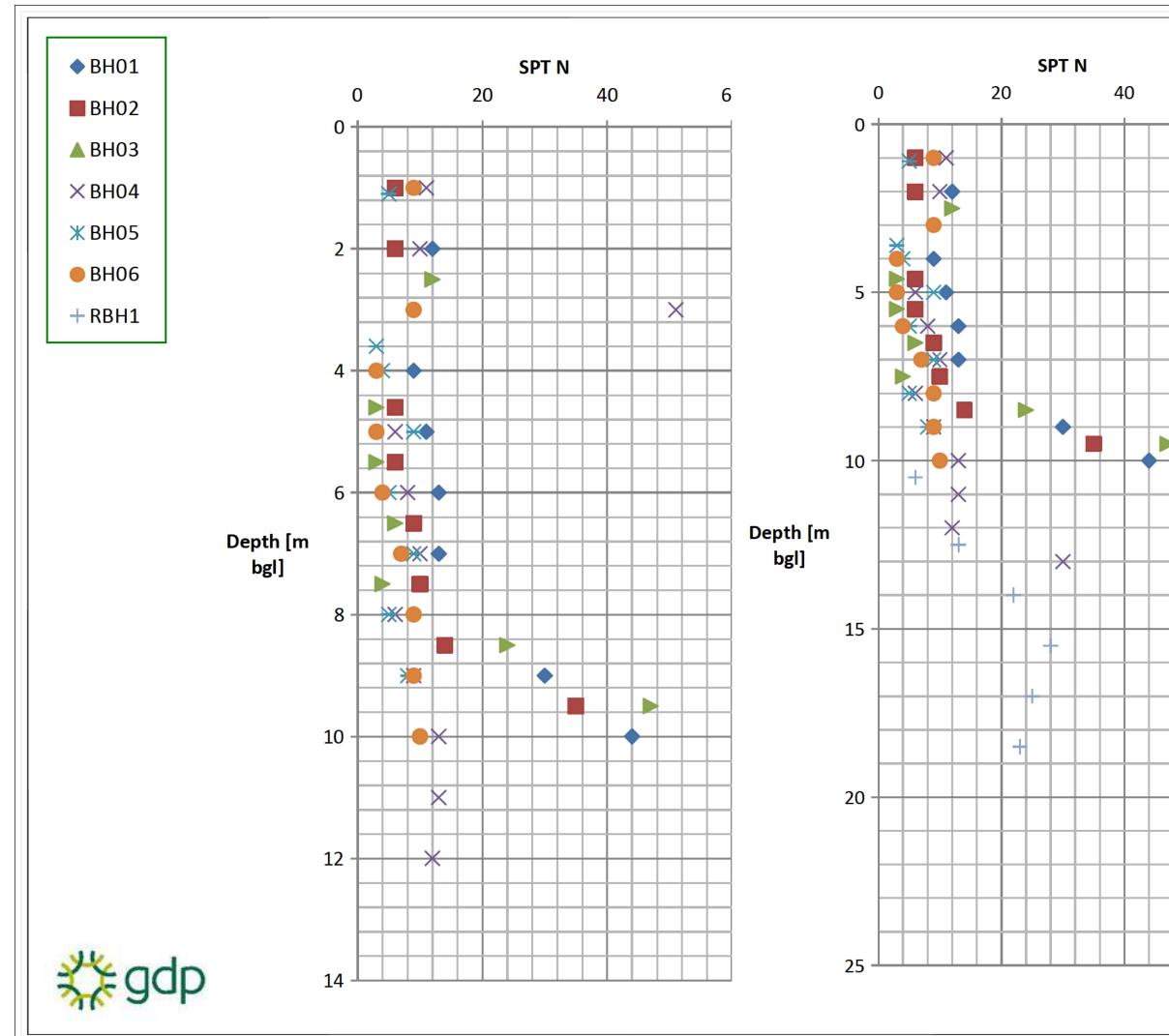
Demolition:

It is assumed that all works will be carried out by a competent contractor working, where appropriate, to an approved method statement

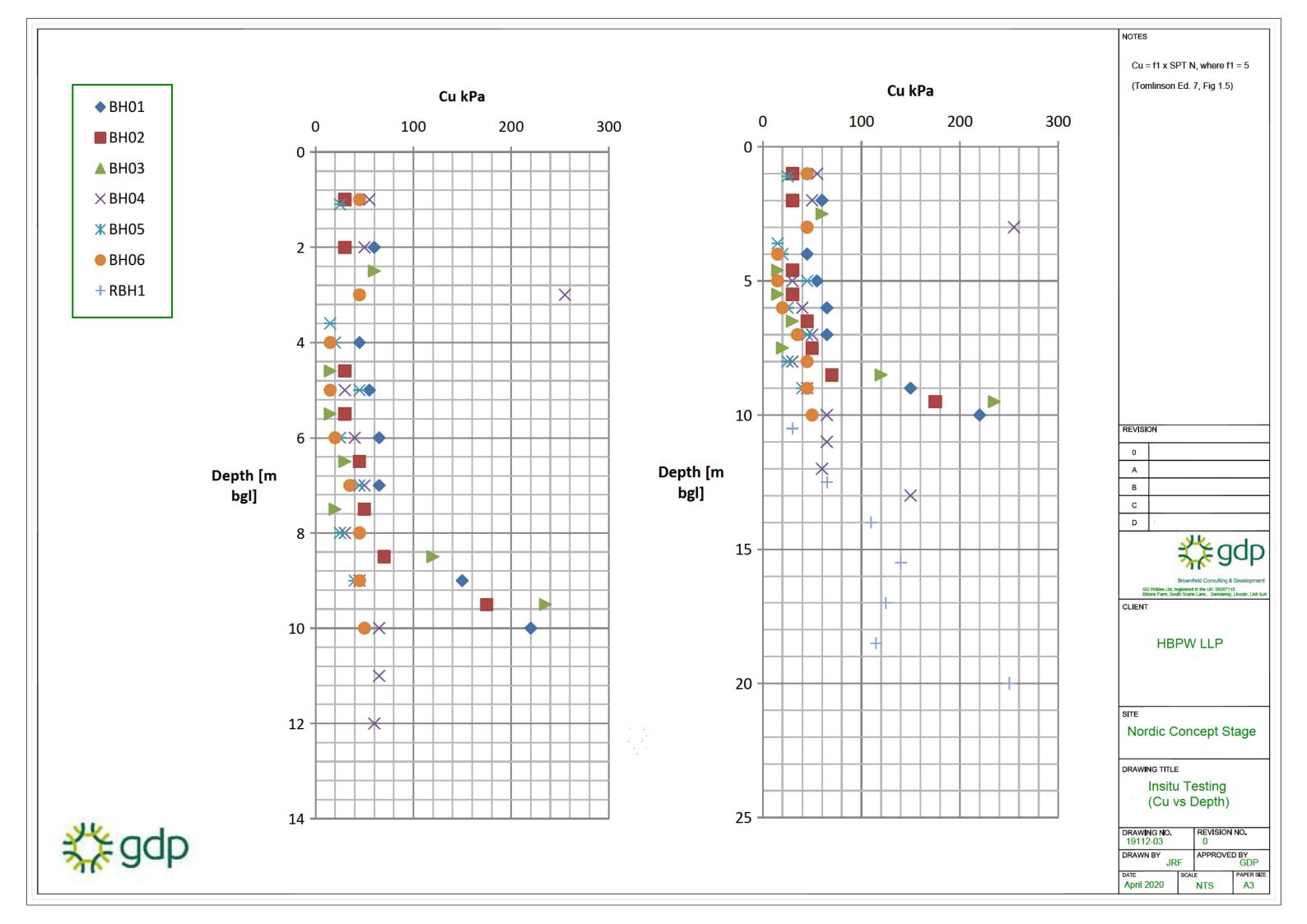
ASSOCIATED BRITISH PORTS

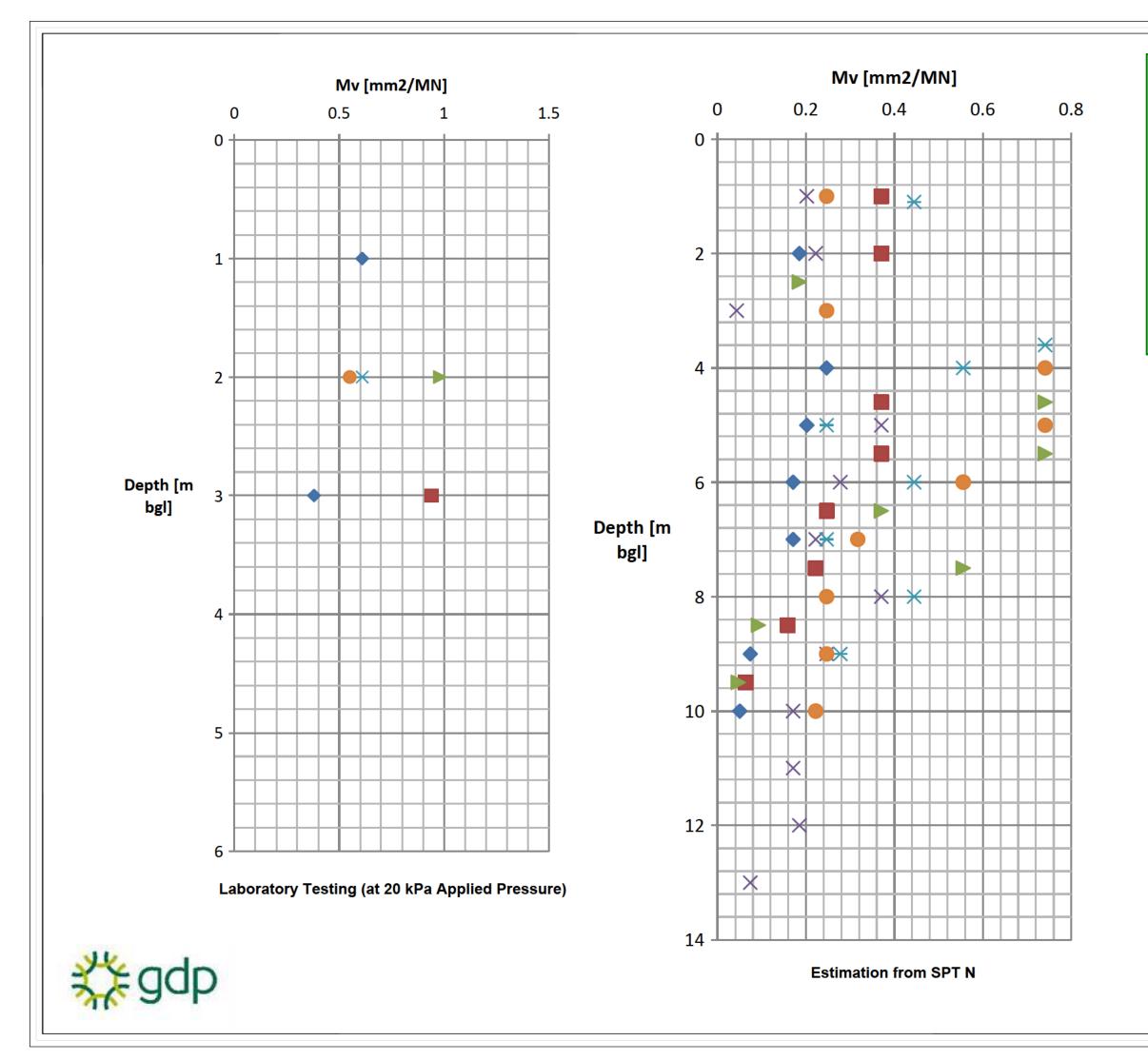
GRAHAM


HBPW PROJECT NUMBER: SL06537


NORDIC CONCEPT STAGE

PROPOSED GROUND INVESTIGATION


PROJECT ENGINEER:		DRAWN:		
PW		KA		
CHECKED:		APPROVED:		
EP		MT		
DATE:	SCALE:	SIZE:	SUITABILITY:	REVISION:
13 NOV 2019	1:2000	A1		-
DOCUMENT REFERENCE	SL065	37.100		


A1

	NOTES				
60					
00					
++++					
	REVISIO	NC			
	0				
	A				
	в				
	с				
	D	:			
			Y	ξg	dp
			3	<u>k</u> a	υp
	GD			ield Consulting & In the UK: 0938711 Lane, Swinderby,	
+-+	CLIENT				,
		HBF	۶W	/ LLP	
++++					
	SITE				
		dic C	on	cept St	age
	DRAW	NG TITLE			
	Ir	nsitu ⁻	Te	stina	
				Depth)	
	DRAW			REVISION	
	19112	2-02		0	
	DRAWN	JRI		APPROVE	GDP
	DATE April 2	020	SCAL	e NTS	PAPER SIZE

♦ BH01
BH02
▲ BH03
imesBH04
X BH05
● BH06

NOTES	3
	= f2 x SPT N, where f1 =0.45
(Tor	nlinson Ed. 7, Fig 1.5)
REVIS	ON
0	
A	
В	
с	
D	-
	tkgdp
	AC 200
G	Brownfield Consulting & Development D Pickles Ltd, registered in the UK: 09387115. Itons Farm, South Scarle Lane, Swinderby, Lincoin, LN5 9JA
CLIEN	
	HBPW LLP

SITE

Nordic Concept Stage

Insitu & Lab Testing

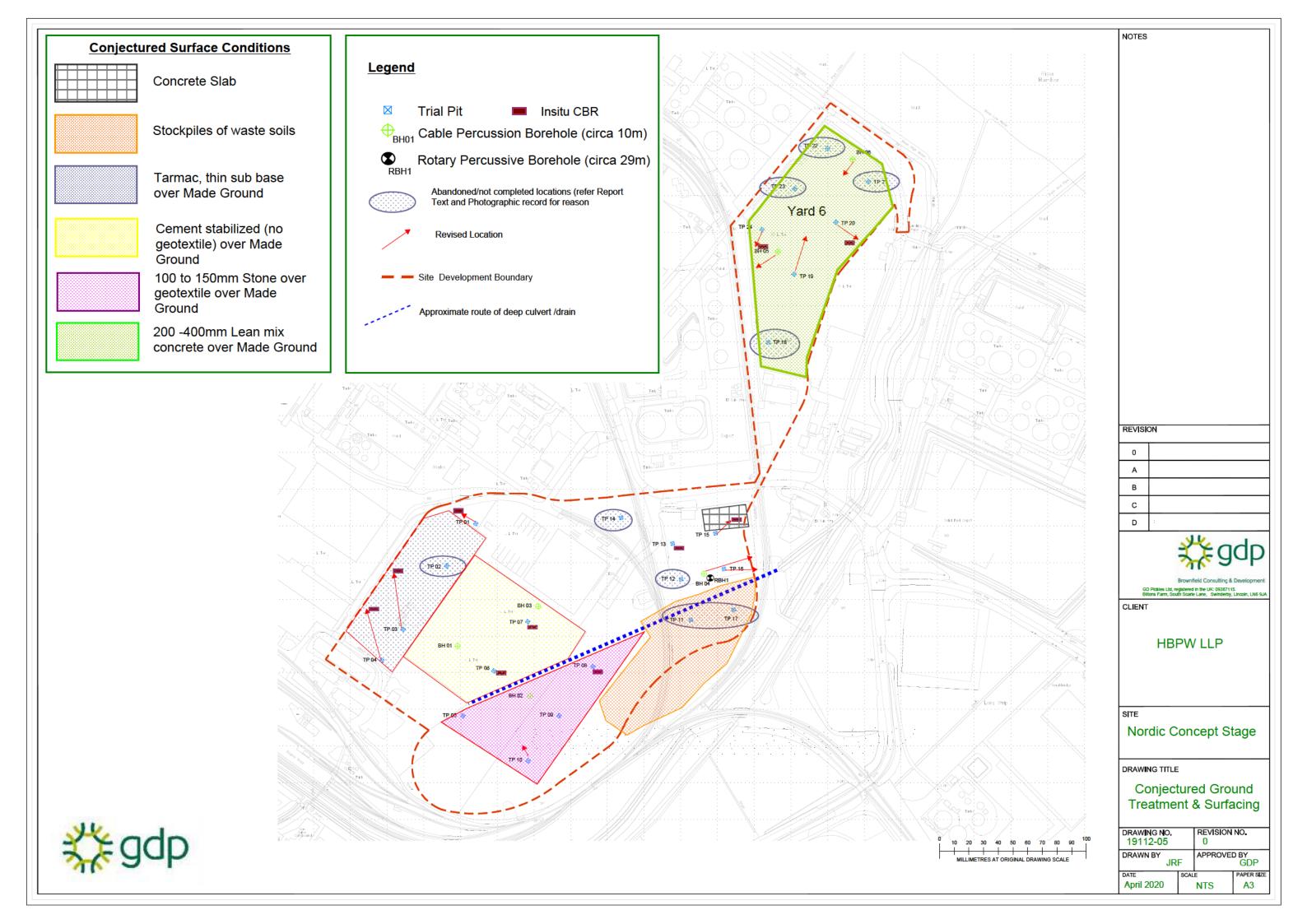
SCALE NTS

REVISION NO.

APPROVED BY GDP

PAPER SIZE

A3


(Mv vs Depth)

DRAWING TITLE

DRAWING NO. 19112-04

DATE April 2020

DRAWN BY

Appendix 1 Exploratory Hole Logs

GD Pickles Ltd. Geoenvironmental Investigation Report Nordic Concept Stage Report Reference 19112.01 April 2020

Bilton's South S	Scarle L rby, Lir	ane, icoln, LN6	9JA	٦	Trial Pit Record	1 :TP	01	I				Srownfield C		
	ompa	JRF ny: Hawl Backhoe			Date: 25 Feb 2020 Location: Nordic Co Ground Elevation: 4				E	Buc	P Job Ref: 1 ket: (mm) ring: (No)	9112		
sample Reference	Sample Range	Depth (mBGL)	Graphic Log	Soil or F	Rock Field Material Des	cription					In Situ/ Lab Test	Grou	undwate	er Levels
D1		0.00 - - - - - - - - - - - - -		brown soily fin (Type 1 gradir MADE GROU gravelly clay w tiles, 1 plastic	ND: Rough grass over ge to medium limestone ag). ND: Firm brown and gre with pottery, bricks, wire bag.	gravel ey sandy , clay					CBR 10%			

Bilton's Fa South Sca Swinderby	arle Lan y, Linco	ie, oln, LN6 9	9JA		Trial Pit Record	:TP	03				Srownfield C	gdp
Logged I Hire Con Excavate	npany	: Hawle			Date: 26 Feb 2020 Location: Nordic Concept Ground Elevation: 5.1 (m			E	Buc	P Job Ref: 1 ket: (mm) ring: (No)	9112	
Sample Sample	Range	Depth (mBGL)	Graphic Log	Soil or	Rock Field Material Descriptic	'n				In Situ/ Lab Test	Grou	undwater Levels
		0.00 - - - - - - - - - - - - -		MADE GROU medium gravu MADE GROU gravelly clay.	cing. Thin, soft bituminous. IND: Brown very sandy fine to el of limestone. Sub base. IND: Orange brown sandy slig					CBR 43%		

Bilton's Farm, South Scarle Swinderby, Li jay@gdpickle	Lane, ncoln, LN6 :	9JA	٢	Frial Pit Record	TP0	4				Srownfield C	g sonsulting &	
Logged By: Hire Compa Excavator:	ny: Hawl			Date: 28 Feb 2020 Location: Nordic Concept Sta Ground Elevation: 4.9 (m AO	-		1	Buc	P Job Ref: 1 ket: (mm) ring: (No)	9112		
Sample Range	Depth (mBGL)	Graphic Log	Soil or F	Rock Field Material Description					In Situ/ Lab Test	Grou	undwat	er Levels
D1	0.00 - - - - - - - - - - - - -		MADE GROUI medium grave	ing. Thin, soft bituminous. ND: Grey very sandy fine to el of limestone. Sub base. ND: Orange brown sandy slightly					- CBR 6.9%			

Bilton's South Swinde	kles Lin s Farm, Scarle L erby, Lin dpickles	.ane, ncoln, Ll	V6 9.	JA	г	Trial Pit Record	:TF	2 0	5				Rownfield C		
ogge	d By:	JRF				Date: 24 Feb 2020				 G	DP	Job Ref: 1	52000 A-0201 20296	erettinen	
			wle	y Pla	ant Hire	Location: Nordic Concep	t Stage			В	ucl	ket: (mm)			
Excav	ator:	Backho	e E	xcav	ator	Ground Elevation: 4.9 (m	AOD)			Sł	101	ring: (No)			
Hire C	ompa	ny: Ha Backho			Aator Soil or R MADE GROUI light grey wove MADE GROUI clay with bricks wire.	Location: Nordic Concep Ground Elevation: 4.9 (n Rock Field Material Descripti ND: Light grey Type 1/2 ove	n AOD)			В	ucl	ket: (mm)		undwa	iter Levels
		F													
		$\left \right $													
		3.0													

Formation is stone layer over a woven geotextile. Groundwater ingress at 1.5m from fill/running sands. Standing at 0.9m.

GD Pic Bilton's South S Swinde jay@gd	s Farm, Scarle I erby, Li	Lane, ncoln, LN6 !	9JA	г	rial Pit Record :	TPC)6				Srownfield C		
Logge	d By:	JRF			Date: 25 Feb 2020			 (SDF	Job Ref: 1	9112		
Hire C	ompa	ny: Hawle	ey Pla	ant Hire	Location: Nordic Concept Stag	ge		E	Buc	ket: (mm)			
Excav	ator:	Backhoe	Exca	/ator	Ground Elevation: 3.7 (m AOE))		5	iho	ring: (No)			
Sample Reference	Sample Range	Bepth (mBGL)	Graphic Log	MADE GROUI	Rock Field Material Description ND: Light grey Type 1/2 over an geotextile.					In Situ/ 8001< Lab Test	Gro	undwate	er Levels
D1 WAC2		- - - - - - - - - - - - - - - - - - -		light grey wove MADE GROUN grey silty clay angular concre	en geotextile. ND: Loose/soft white and pinkish matrix with bricks, kerb stones, ete fragments up to small boulder broken out hard standings.					>100%			
		3.00											

Formation is stone layer over a woven geotextile. Groundwater ingress at 0.9m rising to 0.5m. Depth estimated as pit continuously collapsing due to water and sandy consistency of fill.

Bilton' South Swind	kles Lim s Farm, Scarle L erby, Lin dpickles	ane, icoln, LN6	9JA	Т	Frial Pit Record	:TI	P0	7			Srownfield C		
Logge	d By:	JRF			Date: 25 Feb 2020				GD	P Job Ref: 1	527 CC+ A-0804 70 298	en - 1. et 61. 1. 7. 7. 9.	and a salation fit
		ny: Hawl	ev Pla	ant Hire	Location: Nordic Concep	t Stage			Bu	cket: (mm)			
		Backhoe			Ground Elevation: 3.9 (m					oring: (No)			
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				g . ()	1		
Sample Reference	Sample Range	Depth (mBGL)	Graphic Log	Soil or R	Rock Field Material Description	on				In Situ/ Lab Test	Grou	undwa	ter Levels
D1 D2		0.00 - - - - - - - 0.50		MADE GROUN clay with fine to lithology. In 2 f gravel.	ND: Cement stabilsed layer of ess. ND: Dark brown sandy grave o medium gravel of mixed faces tapering seam of chalk CLAY. No anthropogenic	lly				CBR 11%			
D3		- - - - - - - - - - - - - - - - - - -		material noted	CLAY. No anthropogenic								
		- -2.00 - - - -2.50 - - - - -		Soft grey orga	nic CLAY.					-			

Probably cement stabilsed as unhydrated cement pockets and odour, hard, no geotexile separtor and undulating base suggests ploughed in. Pit dry and stable.

GD Pickles Lin Bilton's Farm, South Scarle L Swinderby, Lin jay@gdpickles	ane, icoln, LN6 9.	JA	Т	rial Pit Record	:TPO	8			Brownfield C	egdp
Logged By:	JRF			Date: 28 Feb 2020			 G	OP Job Ref:	19112	
Hire Compa		y Pla	ant Hire	Location: Nordic Concept S	age		Ви	icket: (mm)		
Excavator:	Backhoe E	xcav	ator	Ground Elevation: 4.2 (m AG	DD)		Sh	oring: (No)		
sample Reference Sample Range	80 Depth (mBGL)	🎇 🗽 Graphic Log	MADE GROUN	Rock Field Material Description ND: Turf over dark brown/black ND: Variable thickness of grey				In Situ/ Lab Test	Gro	undwater Levels
			MADE GROUN possibly ceme brown gravelly MADE GROUN gravelly clay w concrete fragm with some dele	ND: Variable thickness of grey nt stabilsed sandy gravel and clay. ND: Firm orange brown slighly ith occasional brick and hents. Possibly re-worked natur eterious ingress in upper layers.	al			CBR 6.2%		

Pit stable. Groundwater ingress from top of organic Clay and rose to 1.2m. Slight organic/industrial odour from fill and strong natural organic odour from natural Clay.

Bilton's South S Swinde iav@gd Logge Hire C	kles Limit s Farm, Scarle Lat erby, Linc dpickles.c d By: J company vator: Ba	ne, oln, LN6 co.uk RF y: Hawl	ey Pla	ant Hire	Date: 28 Feb 2020 Location: Nordic Concept Ground Elevation: 4.1 (m		09	 в	luc	Job Ref: 1 ket: (mm) ring: (No)	5971.04 A42651 92-296	ansutting & Developm	ent
sample Reference	Sample Range	Depth (mBGL)	Graphic Log	Soil or F	Rock Field Material Description	n				In Situ/ Lab Test	Grou	undwater Lev	vels
		0.00 - - - - - - - - - - - - -		Type 1/2 layer with no geotex MADE GROU sandy clay. Ra MADE GROU brown clay an	ND: Possibly cement stabilser r. Consistent thickness 250mr tile separator noted. ND: Firm stiff orange brown are red brick fragments. ND: Soft dirty grey and black d sand matrix with brick, ber hoses, tiles.								

South S Swinde iay@gd	s Farm, Scarle La erby, Linc dpickles.c ed By: J	oln, LN6 :o.uk	9JA	-	Date: 28 Feb 2020	:TP1	0	 G	DF	• Job Ref: 1	520004-060370298		
lire C	ompan	y: Hawl	ey Pla	ant Hire	Location: Nordic Concept S	tage		в	uc	ket: (mm)			
xcav	ator: Ba	ackhoe	Exca	vator	Ground Elevation: 4.2 (m A	OD)		S	ho	ring: (No)			
Reference	Sample Range	Depth (mBGL)	Graphic Log		Rock Field Material Description					In Situ/ Lab Test	Gro	undwa	ter Level
		0.00 - - - - - - - - - - - - -		Limestone over MADE GROU more granular	ND: Grey Type 2 graded er light grey woven geotextile. ND: Initially cohesive becoming r with depth mixture of clay, san n rubble including bricks, kerbs,	d							

GD Pickle Bilton's F South Sc Swindert jay@gdp	Farm, carle Lar by, Linc	ne, oln, LN6 9	9JA		Trial Pit Record	:TP1	3			Rownfield Cons	gdp
Logged Hire Co Excavat	mpany	y: Hawle			Date: 26 Feb 2020 Location: Nordic Con Ground Elevation: 5.8			Buc	P Job Ref: 1 :ket: (mm) pring: (No)	9112	
sample Reference Sample	Sample Range	Depth (mBGL)	Graphic Log	Soil or	Rock Field Material Desc	ription			In Situ/ Lab Test	Groun	dwater Levels
)1/WC4		L		ADE GROU MADE GROU clay with brick	JND: Chalk gravel. JND: Brown, orange brow				CBR 1.5%		

GD Pickles Li Bilton's Farm South Scarle Swinderby, L jay@gdpickle	, Lane, incoln, LN6	9JA		Trial Pit Record	:TP15	;			Srownfield Cons	gdp
Logged By Hire Comp Excavator:	any: Hawl			Date: 26 Feb 2020 Location: Nordic Conce Ground Elevation: 5.8 (Bu	DP Job Ref: Icket: (mm) oring: (No)	19112	
sample Reference Sample Range	Depth (mBGL)	Graphic Log	Soil or I	Rock Field Material Descrip	tion			In Situ/ Lab Test	Groun	dwater Levels
D1	0.00 - - - - - - - - - - - - -		appears rigid. MADE GROU subbase. MADE GROU POSSIBLY M slighly gravel	IND: Brown sandy gravel IND: Chalk gravel.				CBR 63%		

Bilton' South Swind	ckles Lin 's Farm, Scarle I erby, Li dpickles	Lane, ncoln, LN	16 9J <i>1</i>	A	т	Frial Pit Record	ΤP΄	16				Srownfield C		
Logge	ed By:	JRF				Date: 25 Feb 2020				GDI	Job Ref: 1	9112		
Hire C	Compa	ny: Ha	wley	Pla	nt Hire	Location: Nordic Concept Sta	ge			Bud	ket: (mm)			
Excav	ator:	Backho	e Ex	cav	ator	Ground Elevation: 5.7 (m AOE))		:	Sho	ring: (No)			
Sample Reference	Sample Range	Denth (mBGL)		Graphic Log	Soil or R	Rock Field Material Description					In Situ/ Lab Test	Gro	undwa	iter Levels
D1		 			sand from stoc	ND: Loose white/creme foundry ckpiles. ND: Dark brown soily clay and of brick and concrete.					-			
D2														
		-0.50		Dark brown bla	ack PEAT.									
		-2.0 - - - -2.5 - - - - - - -												
		3.0												

Pit collapsing in Peat layer. Oragnic smell from base, natural. May be within area of infilled/culveretd drain that had a wide open channel at this point. Manhole visible approx 6m beyond fence along line of culvert.

Swindert iav@gdo Logged Hire Co Excavat	l By: Ji mpany	RF III. Hawl	ey Pla	ant Hire	Date: 27 Feb 2020 Location: Nordic Concept St Ground Elevation: 4.3 (m AC		9	в	uc	9 Job Ref : 1 ket: (mm) ring: (No)	54700×4508357028	Consulting	8. Development
campe Reference Sampe	sampie Range	Depth (mBGL)	Graphic Log	Soil or f	Rock Field Material Description					In Situ/ Lab Test	Gro	undwa	iter Levels
D1		0.00 - - - - - - - - - - - - -		And 250mm le no reinforcem MADE GROU sub base. MADE GROU clay fill includi bag, a steel si posts, cables.	IND: Light brown sandy gravel IND: Brown, grey , black mainly ing, bricks, concrete, wire, plastic ink, a cold tap, re-bar, wood . Slight oily odour. rganic CLAY. Frequent ion in discrete layers with natural	:							

Bilton's Fal South Scar Swinderby, jav@gdoic Logged B Hire Com Excavato	le Lan Linco (les.co y: JF pany	RF : Hawl	ey Pla	ant Hire	Date: 27 Feb 2020 Location: Nordic Conce Ground Elevation: 3.6 (20	в	uc	9 Job Ref: 1 ket: (mm) ring: (No)	5470 CHANNAS (542%)	e g	
Sample	Kange	Depth (mBGL)	Graphic Log	Soil or	Rock Field Material Descrip	tion				In Situ/ Lab Test	Grou	undwa	ter Levels
		0.00 - - - - - - - - - - - - -		And 400mm I no reinforcen MADE GROU sub base. MADE GROU clay fill includ re-bar, wood Slight organic odour. Firm brown a Frequent roo	JND: Varying between 350n ean mix concrete. No aggre nent. JND: Light brown sandy gra JND: Brown, grey, black ma ling, bricks, concrete, wire, fragments, metal shards, pc /industrial (not hydrocarbor nd dark grey organic CLAY. ts/vegetation in discrete layu rganic odour.	vel inly ottery.				CBR 8.3%			

GD Pickles Lin Bilton's Farm, South Scarle L Swinderby, Lir jay@gdpickles	ane, Icoln, LN6	9JA		Trial Pit Record :	TP2	4			Srownfield C	gdp
Logged By: Hire Compa Excavator: [ny: Haw			Date: 27 Feb 2020 Location: Nordic Concept Sta Ground Elevation: 4.9 (m AOI	-		Bu	P Job Ref: 1 cket: (mm) oring: (No)	9112	
sample Reference Sample Range	Depth (mBGL)	Graphic Log	Soil or	Rock Field Material Description				In Situ/ Lab Test	Grou	undwater Levels
WAC5 D1 D2/D3			aggregate, no MADE GROU sub base. MADE GROU mainly sandy bag, slight inc	IND: Lean mix concrete. No o reinforcement. IND: Light brown sandy gravel IND: Compact, brown and black, clay with bricks, tiles, a plastic dustrial odour. rown sandy CLAY.				CBR 13%		

GD Pic Bilton' South Swindo <u>W: adr</u>	s Farm Scarle erby, Li	Lane incoln	, LN6	9JA	Boreh	ole Record	:	вн	01	I			***	¢ Consulting	
DRILL	ING D	ETA	ILS			Drilling Date: 25/26 Feb 20	020				GDF	Project Re	f: 19112		
Drillin	g Cor	npan	y: J	& S E	Drilling	Location: Nordic Immingh	am				Bor	e Diameter:	150 (mm	I)	
Drillin	g Met	hod:	Cab	le Pe	rcussion	Ground Elevation: 4.087 (mAOD)			Co-o	ordinates:			
Sample Reference	Sample Range		Depth (mBGL)	Graphic Log	Soil or R	ock Field Material Descriptio		(blov	ws/: ବ୍ଳାନ	8 8	3 88	In Situ/ Lab Test		Detail	Construction s And ater Levels
		E	0.00	\otimes	MADE GROUN	ND: Clay and brick fill (Drillers	5			Τ					
		E	0.50 1.00 1.50 2.00	××	description). Soft brown and	l arev SILT				+	+				
		Ē	1.00	XŰX	con provin and						_				
U100 D		Ē	1.50	×^×											
		Ē	2.00	$\times \times $											
D		- F		×××				*				N=12			
		Ē	2.50	×^×						\top	+				
U100		Ē	3.00	$\times \times $						+	+				
D		E	3.50	×××						+	_				
		Ē	4.00 4.50	XŶX											
D		Ē		$\hat{\mathbf{x}}$				4				N=9			
		Ē	4.50	$\times^{\times}_{\times} \times$						Τ					
D		Ē	5.00	×^×				*		+	+	N=11			
		Ē	5.50	$\hat{\times}^{\times}$						+	+				
		Ē	6.00	$\times^{\times}_{\times} \times$							_				
D		E	6.50	×××								N=13			
		Ē	0.50	$\hat{\mathbf{x}}^{\times}\hat{\mathbf{x}}$											
D		Ē	7.00 7.50	$\times_{\times}^{\times} \times$						Τ		N=13			
		Ē	7.50	$\overset{\times}{}\overset{\times}{}\overset{\times}{}\overset{\times}{}$						+	+				
		Ē	8.00	$\hat{\times} \hat{\times}$						+	_				
D		Ē	8.50	$\times^{\times}_{\times} \times$				4				N=9			
		Ē	8.50 9.00	×××											
D		E		_ <	Dark brown mo CLAY.	ottled grey slightly gravelly sa	indy		•			N=30			
		Ē	9.50	- 0	OLAT.						+				
D		E	10.00	- 2				+	$\left \right $	*	+	N=44			
		Ē	10.50	_ <							+	N=44			
		E	11.00							\square					
		E													
		F	11.50							\top					
		Ē	12.00							+	+				
		Ē	12.50					+	\parallel	+	+				
		Ē	13.00							\square	_				
		E	13.50												
			14.00												
	ouno y case	dwat	er C	Obse	ervations:										

<u>W: qdp</u>	erby, Li ickles.	ncoln, LN6 <u>co.uk</u>	9JA	Boren	ole Record		ЗH	02				in contraction of the	ionsulting & Develop	ment
		ETAILS			Drilling Date: 25 Feb 2020						P Project R			
		ipany: J		-	Location: Nordic Immingha						e Diameter	: 150 (mm))	
Drillin	g Met	hod: Cab	le Pe	rcussion	Ground Elevation: 4.088 (n	nAOD)				Co-	ordinates:			
sample Reference	Sample Range	Depth (mBGL)	Graphic Log	Soil or R	ock Field Material Description		,₽ 8	8	300 7 (mm 8 88	2 - 3		eter Constr)etails And ndwater Le	
		0.00	\otimes		ND: Stone fill (Driller's	<u> "</u>			T					
		0.50	⋘		ND: MIxture of dark brown and		+	+	+	\vdash	-			
	e.50 MADE GROUND: MIxture of dark brown a black/grey clay and grey crushed rock.													
D	black/grey clay and grey crushed rock.										N=6			
		-1.50	***			F		+	+		1			
		2.00	\otimes			-		_	_		4			
D		Ē	\otimes	MADE ODOU		'					N=6			
D		-2.50	⋙	MADE GROUN	ND: Grey SILT with SAND	1	$\uparrow \uparrow$	1			1			
		-3.00		MADE GROUN	ND: Wood obstruction, railway	_/-	+	+	+	$\left \right $	-			
U100		3.50		\sleeper, chipbo Dark brown mo	pard. ottled grey slightly gravelly san	dv					4			
		E	<u>.</u>	CLAY.		-								
		-4.00	$\hat{\mathbf{x}}^{\times}\hat{\mathbf{x}}$		SILT. Occcasional bands of re ted vegetation. Sand pockets.			+	+		1			
3/U100		4.50	×××		5	-	+	_	+	\square	-			
D		5.00	×~×			4	2				N=6			
		E 5.00	×^×											
D		5.50	$\times \times \times$				+	+	+		-			
U		6.00	××,			Ľ					N=6			
		E	$\hat{\times}^{\times} \times$											
D		6.50	×Ű×				4				N=9			
		7.00	×^×			\vdash	+	+	+	$\left \right $	-			
		7.50	$\times \times \times$											
D		E	×××				4				N=10			
		8.00	$\hat{\mathbf{x}}^{\times} \hat{\mathbf{x}}$			F		+	╈		1			
		8.50	×Ű×			-	+	_	+	$\left \right $	-			
D		9.00	×^×				*				N=14			
		E	X X	Dark brown mo	ottled grey slightly gravelly san	dy								
D		-9.50		CLAY.		-	\dagger			$ \uparrow$	N=35			
-		E 10.00	- <				+	+	+	\parallel	_			
		-10.50												
		E 10.50				Γ		T						
		E 11.00				F	+	+	+	+	1			
		-11.50				Ļ	\parallel	_			4			
		E												
		-12.00				F	$\uparrow \uparrow$	1	\uparrow	$ \uparrow$	1			
		12.50				┝	+	+	+	$\left \right $	-			
		-13.00												
		=				ſ								
		13.50				┝	+	+	+	\parallel	1			
		F 14.00												

Dry. Chiseling between 2.6 and 2.9m. Cased to full depth.

Swinderby, I W: adpickles DRILLING Drilling Co Drilling Me	<u>s.co.uk</u> DETAIL mpany	. s :J8	& S [-	Drilling Date: 24 Feb Location: Nordic Imr Ground Elevation: 3	ningham			E	Bore	Project Re Diameter: ordinates:	ALC: Children Mar Pro	onsulting & Developm	nent
Sample Reference Sample Rande		Depth (mBGL)	Graphic Log		Rock Field Material Desc	cription (blow P 8	8	8 8 00u T	۱m) 82	In Situ/ Lab Test	D	eter Constru etails And ndwater Lev	
U100 NR U100 D U100 nr D D D D D D	0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	00 50 50 50 50 50 50 50 50 50 50 50 50 5		graded with c stabilised). MADE GROU black/grey cla Soft grey mot	ND: Fine to medium Typement (Possibly cement ND: Mixture of dark broo y and grey crushed rock ted brown sandy CLAY.	elly sandy					N=12 N=3 N=6 N=4 N=24 N=47			

DRILL		ETAILS		Drilling	Drilling Date: 26 Feb 2020	1				P Project R re Diameter	ef: 19112	Consulting & Developm
				ercussion	Ground Elevation: 5.96 (mA					-ordinates:	, .	
sample Reference	Sample Range	Depth (mBGL)	Graphic Log	Soil or R	Rock Field Material Description	(blo 승은 (ws/ ୧୧୫	8 8	2 8	2 - 2	[eter Construc)etails And ndwater Leve
		0.00	*	MADE GROUI	ND: Stone, ash and clay.							
D		-1.00	\otimes							N=11		
		-1.50	\otimes							-		
D		2.00	\otimes		ND: Multicoloured clay, gravel					N=10		
		2.50	\otimes	and brick fill.	D. Multicoloured clay, graver		\square	+	$\left \right $	-		
U100		3.00	\otimes				$\left \right $	-	$\left \right $	_		
D		-3.50								-		
D		-4.00 -4.50 -5.00 -5.50 	\otimes	MADE GROUN gravelly ash w	ND: Grey, black and red/puple ith wood fragments.		\square			N=51		
U		4.50	\otimes		Ū.			_	H	-		
		5.00	$\underset{\times}{\overset{\infty}{\times}}$	Soft dark grey	SILT.					-		
D		5.50	××××			A				N=6		
		6.00	×××							_		
D		6.50	××××							N=8		
		7.00	$\times \times $							_		
D		E 7 50	×××			4				N=10		
		-7.50	×××									
D		L .				۸				N=6		
		- 8.5L	xxx x									
D		9.50	×^× × ×			4			$ \uparrow$	N=9		
		-9.50	×××							_		
D		10.0				-				N=13		
		E	×							-		
D		E 11.0		Dark brown mo CLAY.	ottled grey slightly gravelly sand	y 🔺				N=13		
		-11.5					+	+		-		
D		12.0					H	+	H	N=12		
		12.5					+	+	\mathbb{H}	-		
D		13.0					$\left \right $	+	$\left \right $	N=30		
U		13.5	• <u> </u>			-++	НĪ	_	\square			

GW strike at 3.80m rose to 3.70m and cased off at 5.5m. Borehole thought to be located in area of deep backfilled ditch. Initial location failed on obstruction.

GD Pic Bilton's South S Swinde <u>W: qdp</u>	s Farm Scarle I erby, Li	Lane ncoln,	LN6	9JA	Boreh	ole Record	:	Bł	10	5			Rownfield	E Consulting		D
DRILL	ING D	ETA	ILS			Drilling Date: 27 Feb 2	2020				GDF	Project Re	f : 19112			ocochi.
Drilling	g Con	npan	y: J	& S [Drilling	Location: Nordic Imm	ingham				Bor	e Diameter:	150 (mm	1)		
Drilling	g Method: Cable Percussion					Ground Elevation: 4.7	734 (mAOD)			Co-	ordinates:				
Sample Reference						ock Field Material Descr		°5 ⊳	ows ର ନ	3 4 1)mm) 8 88			Detail	Constru Is And ater Lev	
		Ē	0.00			reinforcement noted.										
D	0.00 Concrete - 0.50 MADE GR concrete b 1.00 MADE GR 1.50 · · · · with occas					ND: Black and grey ash v s. ND: Grey, black, brown a I brick, pottery, rare woo	ishy clay	A				N=5			0000	៰ ៹៰ ៹៰៹៰៹៰៹៰៹៰៹៰៹៰៹៰៹៰៹៰៹៰៹៰៹៰៹៰៹៰៹៰៹៰៹
		Ę	2.00	· —	Dark brown mo	ottled grey slightly gravel	ly sandy			_		-			Soc	20
U100		Ē			CLAY.											0
D		Ē	2.50													0
Dillago		Ē	3.00	<u> </u>		0.1. T				+	++	-				20
B/U100		Ē	3.50	$\times \times \times$	Soft dark grey	SILT.			+	_	\square	-			0000	20
D		Ē	4.00	$\hat{\mathbf{x}}_{\mathbf{x}}^{\mathbf{x}}$				۸				N=3			00	0
D		E		××××				A				N=4			000	20
		Ē	4.50	×x×					\top			-				20
		Ę	5.00	$\times \times $					+	+	++	-			00	0
D		Ē	5.50	×Č×				4				N=9			0000	20
		E		××××											loc	20
		Ē	6.00	×××					Π						00	0
D		Ē	6.50	$\times \times $				*		-	++	N=5			00	20
		E	7.00	×Č×						_		-				20
D		Ē	7.50	×××××				4				N=9			0	,°
		Ē	7.50	×××												20
D		Ē	8.00	xxx x				۸				N=5				20
		Ē	8.50	×î× ×××								-				00
D		F	9.00	×××				۵				N=8				0000000000
			9.50	$\times \times \times$						+		-			2 0	0
		Ē	10.00	<u></u> ×.					+	_		-				ാ്ഠ
		F	10.50													
		E														
		E	11.00					\square	$\uparrow \uparrow$	+		1				
		Ē	11.50					\vdash	+	+	++					
		Ē	12.00									-				
		F														
		Ē	12.50]				
		E	13.00					\vdash	+	+	++	-				
		Ē	13.50					\vdash	+	_	\square	-				
		Ē	14.00													
					ervations: Chiseling GL to 0.	30m.										

DRILLING DETAILS Drilling Company: J & S Drilling Drilling Method: Cable Percussion					Drilling Date: 28 Feb 2020 Location: Nordic Immingham Ground Elevation: 4.081 (mAOD)					GDP Project Ref: 19112 Bore Diameter: 150 (mm) Co-ordinates:					
sample Reference	Sample Range	Depth (mBGL)	Graphic Log	Soil or F	Soil or Rock Field Material Description			SPT (blows/30 ୦୧ ର ର ବ		2 - 2	Piezometer Constructio Details And Groundwater Levels				
	0.00 TARMAC 0.50 MADE GROUND: Grey, bla with mixed granular matera brick, pottery, rare wood and brick, pottery, rare wood and class of the second secon	ND: Grey, black, brown ashy nular materails, occasional rare wood and metal fragmer ottled grey slightly gravelly sa	clay nts.				N=9 N=9 N=3 N=3 N=3 N=3 N=4 N=7 N=9 N=9 N=9								
D		9.50 10.00 10.50 11.00 11.50 12.00	× × × × × × ×							- N=10 					
		Hand to full de	Obse	ervations:						-					

GD Pickles Limited Bilton's Farm South Scarle Lane Swinderby, Lincoln, LN6 9JA <u>W: adpickles.co.uk</u>					Boreh	nole Record :RBH1					Stownfield Consulting & Development				
DRILLING DETAILS						Drilling Date: 24/29 Feb 2020				GDF	Project Re	f : 19112			
Drilling Company: J S Drilling Services L					ling Services Ltd	d Location: Nordic Immingham				Bore Diameter: 102 (mm)					
Drilling Method: Rotary Percussive T41						Ground Elevation: 5.96 (mAOD)				Co-	ordinates:				
				,			,								
Sample Reference	Sample Range		(updm) (mdau	Graphic Log	Soil or Re	ock Field Material Description		SPT (blows/30) ତଟ ର ର ବ			388	In Situ/ Lab Test	Piezometer Constructio Details And Groundwater Levels		
		E 0.0		×	MADE GROUN	ID: Foundry sand.									
		E ^{0.5}		\propto	MADE GROUN	D: Medium dense bl		\square		_					
		E1.5	ΩR	8	grey ash with s	mall concrete boulde	rs.	\vdash	++	+	++	-			
		2.0		XX											
		3.0		88		ID: Soft grey silt with	concrete	\vdash	++	+	++	-			
		3.5	ĸ	88	obstructions.			H		1					
		E4.0		\propto	Coff grou mette	ed brown silty CLAY.		μŢ	$+\top$	\bot	$+ \Box$	-			
		5.0	io †3		Son grey mottle	CONTRACT		$\left + \right $	++	+	++	-			
		5.5	οÈ					\square							
		6.5	io .×	<	Firm brown silty	y CLAY and PEAT ba	inds.	\vdash	++	+	++	-			
		7.0		<											
		8.0		<				\vdash	++	_	++	-			
		-8.5		-×-				\vdash	++	+	++	-			
		9.0	-	-×- <											
		E 10	.00	-x-				\vdash	++	+	++	-			
		10	.50	:.	Medium dense	grey silty SAND.		۸				N=6			
С		11		:				\vdash	++	_	++	-			
		12	-		Stiff brown mot	tled grey CLAY.		\square	++	+					
~		12						•	•			N=13			
С		E 13		- <	Stiff brown slig	htly gravelly sandy C	AY.	⊢	++	+	++	-			
		14	-	- <	-				٠			N=22			
С		15						\vdash	++	_	++	-			
		15						H		+		N=28			
С		16		- <								-			
		E17	.00	\bigcirc				\vdash	*	+	++	N=25			
С		17	.50												
		18	.50 -	- <				\vdash		+	++	N=23			
С		E19		<u> </u>	Dense SAND a			\vdash	Ft	+	++	11-25			
		E ¹⁹	50 0 .00		Dense SAND a	IND GRAVEL							_		
С		20						\vdash	++		╇	(14/45mm)			
-		21						H		+		-			
		22		::		AND. [Note: proably essure causing uplift									
		22		_i	apparent loose	ning and low SPT N]	/	11							
		23			Probably weath	nered CHALK, CHALI	K gravel.								
		24	.00		[Returns are C	HALKJ.									
		24													
		25		'											
		26													
		26													
		27													
		28			Probably CHAL	K [Returns are hard	CHALK								
		E28			\gravel]	•	/	1							

Groundwater Observations:

Concrete obstructions at 1.0 and 4.0m. Dense sands and gravel at 19.3m. SPT failed at 21m due to blowing sands. Sand rose to 17.8m. No recovery below 20m so used Geobore mud to stabilise bore and open hole. Soft drilling 17.5m to 19.0m re-drilling in blown sand, lost flush 19.0 to 22.5m. Firm drilling with chalk gravel returns to 28m hard drilling with chalk gravel returns to 28.5m.

Diameter (mm)	Run Length (m)	Start (m bgl)	End (m bgl)	TCR	TCR(%)	Flush Return
102	2	10.5	12.5	1.15	57.5	100%
102	1.5	12.5	14	1	66	80%
102	2.5	14	15.5	1.6	64	100%
102	2	15.5	17	0.9	0.45	100%
102	1.5	17	18.5	1.3	87	100%
102	1.5	18.5	20	0.7	46	80%
102	1.5	20	21.5	NIL	0	50%

Rotary Core Recovery

Appendix 2 BGS Logs

GD Pickles Ltd. Geoenvironmental Investigation Report Nordic Concept Stage Report Reference 19112.01 April 2020

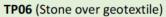
NATURE OF STRATA THICKNESS DEPTH (For Survey use only) GEOLOGICAL Feet Inches Feet Inches If measurements start below CLASSIFICATION ground surface, state how far ••• ••• C.61 0 61 Mode Mp Ground 2 2 0 3 66 4 27 1 Soft Brown Warp. 12 14 0 0 6.40 0 10.61 Soft Blue Wanp. Baulder Clay, With seames of Running Sand and Gravel 21 35 0 17 68 7.01 23 58 0 0 4.27 21.75 14 0 72 0 Baulae blay Chalk Gravel Saft Dinty Chalk. White Chalk. 25.41 3.76 13 0 85 0 1.52 27-43 90 5 0 0 3.05 30.48 10 0 110 0 80-48 61 96 100 200 0 0 Fintsh Geological Sarvey Britist Geological Survey 0 . British Geological Survey IMMINGHAM DOCK. British Geological Survey

At	mmin	yham W	ocK			r									
Town or Village	a mmmgy	Kam.					10	6							
County Lincoln	1 hine	Six-inch qua	rter sheet	X 111. S.E.		British Geo	ogical Surre								
For Mr.	AN.E. RO	ailway :	bo.				I U	J							
		-				(A	ttach a	tracing f	rom						
Exact site of well Level of ground st above sea level (SHAFT			Jamina	han Donk			a map,	or a ske	tch-						
Level of ground su	irface 3.05	· 1	If wel	l-top is not at	ground	(above:	map, n	possible.							
above sea level ((0.D.) <u> </u>	ft.	leve	el, state how f	ar	(below;		ft.							
SHAFT	ft.; diame	eter	ft. De	tails of h ead i	ngs TA										
PODD /0.1	•			n_/	54	200	4115	22							
BORE /02							dî	ins.]	Lengths,						
diameters, perforat	tions, etc., of l	ining tubes	86-0 X	22 yal	1 tubes	•,									
ritish (leological Survey		Rritish Gon	odical Survey			British Geol	odical Surve								
water struck at de															
Rest-level of water															
per haur, with															
rest level in	min	Date of	measuremen	its april	ė 1946	Date of	well	/3 · 4·	#6						
Quality of water (a					,										
Well made by	H. In	nich an of	da (G	in the La	~										
Information from	v	u "	"	. J	ـــــــــــــــــــــــــــــــــــــ	8 cbaca	42	Quin	the						
	Well made by H. Smith an at Son (Grimshy) Lood Information from 5 Schorne St. Grimshy Additional notes in space overleaf. Lines														
(For Survey use only).		· · · · · · · · · · · · · · · · · · ·													
	-		GEOLOGICAL NATURE OF STRATA												
GEOLOGICAL		NATUR	E OF STR	RATA		Тніс	KNESS	Dei	PTH						
		British Geo	ogical Survey				KNESS		PTH Ins.						
GEOLOGICAL CLASSIFICATION		British Geo If meas	ogical Survey urements start	ATA below ground s	urface, e.g., ate how far		oljic Ins. e	Feet	Ins.						
GEOLOGICAL CLASSIFICATION	Made .	British Geo If meas	ogical Suvey urements start ottom of an ex	below ground s	urface, e.g., ate how far		0.30	Feet	Ins.						
GEOLOGICAL CLASSIFICATION	1	British Geo If meas from be	ogical Suney urements start ottom of an ex	below ground s	ate how far		0.30 0 3.35	Feet	Ins. 0.30 0 3.66						
GEOLOGICAL CLASSIFICATION	Soft.	British Ged If meas from be up gapes brawn u	urements start ottom of an ex NCL	below ground s risting shaft, st	ate how far	Feet	Ins. 0-30 0 3-35 0 5-49	Feet	Ins. 0.30 0 3.66 0 9.74						
GEOLOGICAL CLASSIFICATION	Soft.	British Ged If meas from be up gapes brawn u	urements start ottom of an ex NCL	below ground s tisting shaft, st	ate how far	Feet	0.30 0 3.35 0 5.49 0 0.61	Feet 1 10 30 32	Ins. 0.30 0 3.66 0 9.70 9.75 0						
GEOLOGICAL CLASSIFICATION	Saft Saft Peat	British Geo It meas from be app group brown u blue u	ogical Survey urements start strom of an ex a C losp rosp	below ground s tisting shaft, st	ate how far	Feet	0.30 0.30 0.50 5.49 0 0.61 0 5.49 0	Feet 1 10 30 32	Ins. 0.30 0 3.66 0 9.74 0 9.75 0 752 0						
GEOLOGICAL CLASSIFICATION	Saft Bat Mail Bhak	Britsh Gen If meas up grow brawn u brawn u blue du clay - Gry	urements start totom of an ex Cl Casp Cosp	below ground s tisting shaft, st	ate how far	 8 2	0.30 0 3.35 0 5.49 0.61 0.61 0 5.49 0.61 0 7.62 0	Feet 1 12 30 32	Ins. 0 · 30 0 3 · 66 0 9 · 74 0 9 · 75 0 75 2 0 0 2 2 8 0						
GEOLOGICAL CLASSIFICATION	Soft Soft Peat Mare.	Britsh Gen If meas up grow brawn u brawn u blue du clay - Gry	urements start totom of an ex Cl Casp Cosp	below ground s tisting shaft, st	ate how far	 8 8	0.30 0.30 0.50 5.49 0 0.61 0 5.49 0	Feet 1 12 30 32 50	Ins. 0 · 30 0 3 · 66 0 9 · 74 0 9 · 75 0 75 2 0 0 2 2 8 0						
GEOLOGICAL CLASSIFICATION	Saft Bat Mail Bhak	Britsh Gen If meas up grow brawn u brawn u blue du clay - Gry	urements start totom of an ex Cl Casp Cosp	below ground s tisting shaft, st	ate how far	1 1 1 18 2 18 25	Ins. 0.30 0.30 0.335 0.5.49 0.5.5.49 0.5.5.50 0.5.50 0.5.500000000000000000	Feet 1 12 30 32 50 75	Ins. 0.30 0 3.66 0 9.74 0 9.75 0 752 0 22.8 0 0 31.0						
GEOLOGICAL CLASSIFICATION	Saft Bat Mail Bhak	Britsh Gen It meas tron b b 1 autor u b 1	acical Survey urements start thom of an ex a Cl. lasp top monp	below ground s tisting shaft, st	ate how far	- Feet - 1 - 1 - 1 - 1 - 1 - 1 - 2 - 1 - 2 - 1 - 2 	Ins. 0 .3 0 0 .3 5 5 .4 7 0 .6 1 0 .5 2 3 0 .6 1 0 .5 2 3 0 .5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Feet 1 12 30 32 50 75	Ins. 0.30 0 3.66 0 9.74 0 9.75 0 752 0 22.8 0 0 31.0						
GEOLOGICAL CLASSIFICATION	Saft Bat Mail Bhak	Britsh Gen It meas tron b b 1 autor u b 1	urements start totom of an ex Cl Casp Cosp	below ground s tisting shaft, st	ate how far	1 1 1 18 2 18 25	Ins. 0.30 0.30 0.335 0.5.49 0.5.5.49 0.5.5.50 0.5.50 0.5.500000000000000000	Feet 1 12 30 32 50 75	Ins. 0.30 0 3.66 0 9.74 0 9.75 0 752 0 22.8 0 0 31.0						
GEOLOGICAL CLASSIFICATION	Saft Bat Mail Bhak	Britsh Gen It meas tron b b 1 autor u b 1	acical Survey urements start thom of an ex a Cl. lasp top monp	below ground s tisting shaft, st	ate how far	- Feet - 1 - 1 - 1 - 1 - 1 - 1 - 2 - 1 - 2 - 1 - 2 	Ins. 0 .3 0 0 .3 5 5 .4 7 0 .6 1 0 .5 2 3 0 .6 1 0 .5 2 3 0 .5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Feet 1 12 30 32 50 75	Ins. 0.30 0 3.66 0 9.74 0 9.75 0 752 0 22.9 0 0 31.0						
GEOLOGICAL CLASSIFICATION	Saft Bat Mail Bhak	Britsh Gen It meas tron b b 1 autor u b 1	acical Survey urements start thom of an ex a Cl. lasp top monp	below ground s tisting shaft, st	ate how far	- Feet - 1 - 1 - 1 - 1 - 1 - 1 - 2 - 1 - 2 - 1 - 2 	Ins. 0 .3 0 0 .3 5 5 .4 7 0 .6 1 0 .6	Feet 1 12 30 32 50 75	Ins. 0.30 0 3.66 0 9.74 0 9.75 0 752 0 22.9 0 0 31.0						
GEOLOGICAL CLASSIFICATION	Saft Bat Mail Bhak	Britsh Gen It meas from be bourn u bourn u blue du clay clay clay clay clay	acical Survey urements start thom of an ex a Cl. lasp top monp	below ground s tisting shaft, st	ate how far	- Feet - 1 - 1 - 1 - 1 - 1 - 1 - 2 - 1 - 2 - 1 - 2 	Ins. 0 .3 0 0 .3 5 5 .4 7 0 .6 1 0 .6	Feet 1 12 30 32 50 75	Ins. 0.30 0 3.66 0 9.74 0 9.75 0 752 0 22.8 0 0 31.0						
GEOLOGICAL CLASSIFICATION	Saft Bat Mail Bhak	Britsh Gen It meas from be bourn u bourn u blue du clay clay clay clay clay	acical Survey urements start thom of an ex a Cl. lasp top monp	below ground s tisting shaft, st	ate how far	- Feet - 1 - 1 - 1 - 1 - 1 - 1 - 2 - 1 - 2 - 1 - 2 	Ins. 0 .3 0 0 .3 5 5 .4 7 0 .6 1 0 .6	Feet 1 12 30 32 50 75	Ins. 0.30 0 3.66 0 9.74 0 9.75 0 752 0 22.8 0 0 31.0						
GEOLOGICAL CLASSIFICATION	Saft Bat Mail Bhak	Britsh Gen It meas from be bourn u bourn u blue du clay clay clay clay clay	acical Survey urements start thom of an ex a Cl. lasp top monp	below ground s tisting shaft, st	ate how far	- Feet - 1 - 1 - 1 - 1 - 1 - 1 - 2 - 1 - 2 - 1 - 2 	Ins. 0 .3 0 0 .3 5 5 .4 7 0 .6 1 0 .6	Feet 1 12 30 32 50 75	Ins. 0.30 0 3.66 0 9.74 0 9.75 0 752 0 22.8 0 0 31.0						
GEOLOGICAL CLASSIFICATION	Saft Bat Mail Bhak	Britsh Gen It meas from be bourn u bourn u blue du clay clay clay clay clay	acical Survey urements start thom of an ex a Cl. lasp top monp	below ground s tisting shaft, st	ate how far	- Feet - 1 - 1 - 1 - 1 - 1 - 1 - 2 - 1 - 2 - 1 - 2 	Ins. 0 .3 0 0 .3 5 5 .4 7 0 .6 1 0 .6	Feet 1 12 30 32 50 75	Ins. 0.30 0 3.66 0 9.74 0 9.75 0 752 0 22.8 0 0 31.0						
GEOLOGICAL CLASSIFICATION	Saft Bat Mail Bhak	Britsh Gen It meas from be bourn u bourn u blue du clay clay clay clay clay	acical Survey urements start thom of an ex a Cl. lasp top monp	below ground s tisting shaft, st	ate how far	- Feet - 1 - 1 - 1 - 1 - 1 - 1 - 2 - 1 - 2 - 1 - 2 	Ins. 0 .3 0 0 .3 5 5 .4 7 0 .6 1 0 .6	Feet 1 12 30 32 50 75	Ins. 0.30 0 3.66 0 9.74 0 9.75 0 752 0 22.8 0 0 31.0						
GEOLOGICAL CLASSIFICATION	Saft Bat Mail Bhak	Britsh Gen It meas from be bourn u bourn u blue du clay clay clay clay clay	acical Survey urements start thom of an ex a Cl. lasp top monp	below ground s tisting shaft, st	ate how far	- Feet - 1 - 1 - 1 - 1 - 1 - 1 - 2 - 1 - 2 - 1 - 2 	Ins. 0 .3 0 0 .3 5 5 .4 7 0 .6 1 0 .6	Feet 1 12 30 32 50 75	Ins. 0.30 0 3.66 0 9.74 0 9.75 0 752 0 22.8 0 0 31.0						
GEOLOGICAL CLASSIFICATION	Saft Bat Mail Bhak	Britsh Gen It meas from be bourn u bourn u blue du clay clay clay clay clay	acical Survey urements start thom of an ex a Cl. lasp top monp	below ground s tisting shaft, st	ate how far	- Feet - 1 - 1 - 1 - 1 - 1 - 1 - 2 - 1 - 2 - 1 - 2 	Ins. 0 .3 0 0 .3 5 5 .4 7 0 .6 1 0 .6	Feet 1 12 30 32 50 75	Ins. 0.30 0 3.66 0 9.74 0 9.75 0 752 0 22.8 0 0 31.0						
GEOLOGICAL CLASSIFICATION filsh Ceological Survey	Saft Bat Mail Bhak	Britsh Gen It meas from be bourn u bourn u blue du clay clay clay clay clay	acical Survey urements start thom of an ex a Cl. lasp top monp	below ground s risting shaft, st	ate how far	PrFeet	Ins. 0 .3 0 0 .3 5 5 .4 7 0 .6 1 0 .6	Feet 1 12 30 32 50 75	Ins. 0.30 0 3.66 0 9.74 0 9.75 0 752 0 22.8 0 0 31.0						
GEOLOGICAL CLASSIFICATION	Soft Peat Mail & Lolk & Lolk	Britsh Gen It meas from be bourn u bourn u blue du clay clay clay clay clay	acical Survey urements start thom of an ex a Cl. lasp top monp	below ground s risting shaft, st	inued over	Image: Feet Image: I	0 3 3 0 3 3 5 0 5 4 9 0 6 6 1 5 4 9 0 7 6 2 0 7 6 7 0 7 6 7	Feet 1 12 30 32 50 75	Ins. 0.30 0. 3.66 0. 152 0. 3.66 0. 152 0. 3.66 0. 152 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.						

Appendix 3 Photographs

GD Pickles Ltd. Geoenvironmental Investigation Report Nordic Concept Stage Report Reference 19112.01 April 2020

CBR at 550mm (Sub grade clay fill) 6.9%



TP05 (Stone over geotextile, location is close to route of now culverted former deep and wide drain)

CBR at Ground Level after cleaning off organic layer >100%

TP09 (Formation wet and contaminated, no CBR). Clay was of firm to stiff consistency). Most of area flooded in stone, water perched above clay fill or deeper where fill is granular.

quantities of asphalt, kerbstones etc. Matrix is mixture of sands and clays, appears to be graded and possible crusher waste. Some very wet slurry tipping of unknown composition.

Obscured by stockpiled waste soil/demolition arisings. Metal, re-bar etc. no access for wheeled excavator. Appears to be tarmac hardstanding beneath northern part of this area.

TP11

No access, blocked by stockpiles and rotary rig.

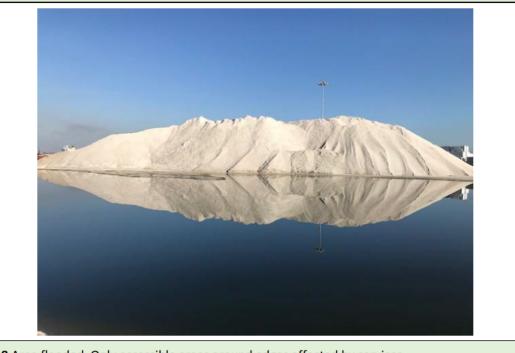
TP12

TP13

CBR at 400mm (Sub grade clay fill below chalk capping) 1.5%

Not Completed. No access, tenanted area.

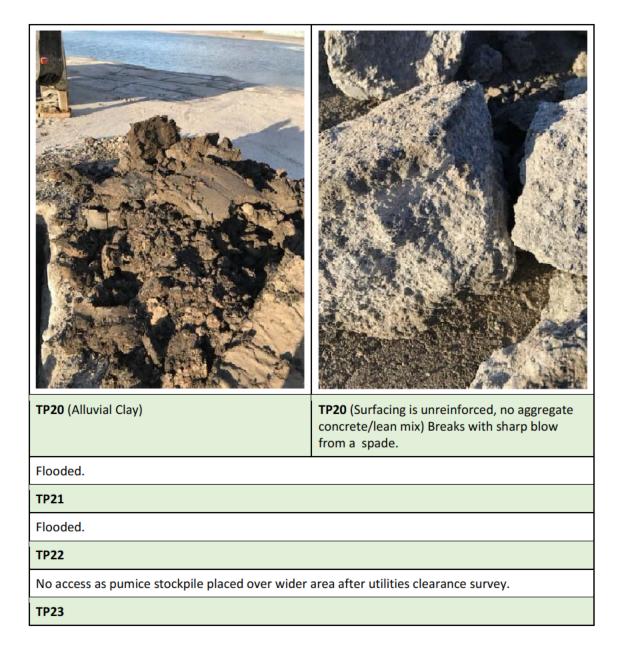
TP14



TP16 next to BH04 (Foundry sand waste, deep fill, Peat, possibly edge of backfilled culverted drain).

Obscured by stockpiled waste soil/demolition arisings. Metal, re-bar etc. no access for wheeled excavator. Appears to be tarmac hardstanding beneath northern part of this area.

TP18 Area flooded. Only accessible areas around edges affected by services.



TP20 (Lean mix surfacing, subbase, landfill, alluvial Clay)

CBR at 550mm (Sub grade clay fill) 8.3%

YARD 6, TP24 and BH05 with CBR testing underway

TP24 (Note: orange sand is from CBR test)

CBR at base of concrete/top of fill) 13%

Appendix 4 Laboratory Test Results

GD Pickles Ltd. Geoenvironmental Investigation Report Nordic Concept Stage Report Reference 19112.01 April 2020

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041		Tested in Ac	cordance with: BS 1377-2: 1990: C	lause 4.4 and 5	Environmental Sc
Client:	G D Pickles		55 danos min. Do 1017 2. 1350. 0		rence: 19112
Client Address:	Biltons Farr	n, South Scarle Lane,		Job Nu	Imber: 20-91280
	Swinderby,			Date Sar	mpled: Not Given
	LN6 9JA			Date Rec	ceived: 02/03/2020
Contact:	Jay Fox			Date T	ested: 10/03/2020
Site Address:	Nordic, Imm	ningham		Sampl	ed By: Not Given
Testing carried out at i	2 Analytical L	imited, ul. Pionierow 39), 41-711 Ruda Slaska, Poland	1	
Test Results:					
Laboratory Reference:	1465487			Depth To	op [m]: 0.90
Hole No.:	TP01 B1			Depth Bas	se [m]: Not Given
Sample Reference:	Not Given			Sample	Type: B
Soil Description:	Dark brown	slightly gravelly slightly	sandy CLAY		
Sample Preparation:	Tested after	washing to remove >4	25um		
As Received Moist	ure	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]		[%]	[%]	[%]	BS Test Sieve
23		55	28	27	96
			-		
100					
90					A line

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

80

70

60

50

40

30

20

10

0

Remarks:

0

10

PLASTICITY INDEX

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

CE

ME

100

110

Liquid Limit

below 35

35 to 50

50 to 70

70 to 90

append to classification for organic material (eg CHO)

exceeding 90

120

130

140

cv

MV

80

90

CH

MH

60

L

L

Н

v

Е

0

Legend, based on BS 5930:2015 Code of practice for site investigations Plasticity

Low

High

Medium

Very high

Extremely high

70

LIQUID LIMIT

CI

MI

50

40

CL

ML

30

Clay

Silt

Organic

20

С

М

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

150

041		Teste	d in Accorda	nce with: BS 1	377 2- 100		A 4 and F					Environ
Client:	G D Pickles I			ice with DO is	511-2. 155	o. Clause	- 4.4 anu (lient Refer	ence:	19112	
Client Address:	Biltons Farm	, South Scarle L	ane.						Job Nu	mber:	20-91280	C
	Swinderby, L		,						Date San			
	LN6 9JA								Date Rec	-		
Contact:	Jay Fox										11/03/20	
Site Address:	Nordic, Immi	ngham									Not Give	
Testing carried out at		-	row 39, 41-	711 Ruda Sl	aska, Po	land				,-		
Fest Results:	,	,			,							
aboratory Reference	1465488								Depth To	n [m]·	1 00	
Hole No.:	BH1								Depth Bas			
Sample Reference:	Not Given							'	Sample			
Soil Description:	Brown CLAY	,							Sumple	rypo.	0	
boli Description.	DIOWINGER											
Sample Preparation:	Tested in nat	tural condition										
ampio i roparation.												
As Received Mois	sture	Liquid Limit		Plastic	Limit		Plas	ticity In	lex	%	6 Passin	ig 425
Content [%]		[%]		[%]				[%]			BS Test	t Sieve
24		65		29				36			10	0
24		05		23				50				10
100												
100												
										.		
90 -		+								+	A line	H
												'
80 -											-	
00												
70 -							CE			+	-+	\neg
60 -		+ $+$ $+$ $$						-		_		
EX					~							
2 50					cv							
5 ³⁰ T							ME					
5												
50		+	C							_	-+	-
¥ I				•/	мν							
ਕ ₃₀												
		CI										
20												
20 -	_		M	- -								\neg
	CL											
10 -				 						_	-+-	-
••••••	······	MI										
0	ML											
) 20 3	30 40	50 60) 70	80	90	100	110	120	130	140	150
0 10	J 20 3	50 4U	JU 0(90	100	110	120	120	140	130
				LIQUID	LIMIT							
	Legen	d, based on BS	5930-2015	Code of pred	tice for s	ite inves	stigations					
	Legen	a, bused off DS		sticity			-	d Limit				
	С	Clay	L	Low			belov					
		Silt	L I	Medium			35 to					
	141	- m	н	High			50 to					
			v	Very high			70 to					
			Ě	Extremely	hiah			eding 90				
			-	LAUOINOIY			0,000	sang ou				
	C	Organic	0	append to	classific	ation for	organic	material	(ea CHO)		

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Liquid and Plastic Limits

TEST CERTIFICATE

Im

11NG 141				Te				0. 4000.	0	4 4 5				Envir	ronmer
lient:		GDF	Pickles Lt		sted in Acco	ordance with	I: BS 1377-	2: 1990: 0	Clause 4	.4 and 5	Client	Reference	:e: 1911	2	
	Address:			South Scarle	e Lane.							b Numb			
			derby, Lin		. Luno,							Sample			
		LN6 9		,								Receive			
onta	ct:	Jay F	ox									ate Teste			
	ddress:	-	ic, Imming	aham								ampled E			
	g carried out				ierow 39.	41-711 R	uda Slask	a. Polar	nd			in pica c			
	Results:	,		,	,			-,-							
	atory Referen	ce: 14654	489								Dep	th Top [r	n]: 3.00		
ole N		BH1										n Base [r	-		
ampl	le Reference:	Not G	Siven									nple Typ			
	escription:	Brow	n CLAY												
ampl	le Preparation	: Teste	ed in natu	ral condition	I										
As	Received Mo		[Liquid Limi	t	P	lastic Lin	nit	Т		city Index			ssing 42	
	Content [%	b]	┝───	[%]			[%]		_		[%]	_	BS	Test Sie	eve
	37			61			34				27			100	
1	100								<u> </u>						1
	90 -												— A li		1
	80 -														
	00]
	70	+	<u>+</u>				1	+		CE					1
	60				<u> </u>			+							-
Š.								v	1/						
Z	50		µ			_	<u> </u>	1							
-	-						1			ME					
2	40 -														
2	40					СН]
							N	/V							
-	30					/	1	+							1
				СІ											
	20		 		\bigwedge	мн		+	+	_					1
			CL												
	10		⊢				4	<u> </u>	_	_					
		• • • • • • • • • • • • • • • • • • • •		<u>м</u> і											
	0		ML												
	0 +	10 2	0 34	10	50	60	70 4		00	100	110 12	0 13	0 1/	10 11	
	0	10 2	0 30) 40	50				90	100	110 12	0 13	0 14	iu 15	50
						L	QUID LI	MIT							
			Legend	based on B	S 5930:20)15 Code (of practice	e for site	investi	ations					
			,			Plasticity	1.22400			Liquid I	Limit				
			C CI	lay		L Low	1			below 3					
				Silt			dium			35 to 5					
						H High	n			50 to 7					
							y high			70 to 9					
						E Extr	remely hig	Jh		exceed	ling 90				
			Or	rganic		O app	end to cla	issificati	on for o	rdanic m	aterial (eg	CHO)			
	Moisture Con						0114 10 010	oomouu	00. 0	igane m	atomai (og				

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

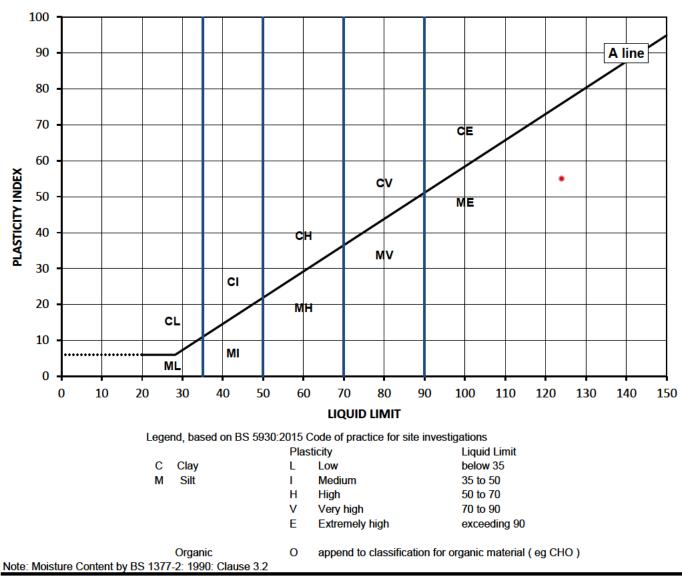
GF 232.8

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

lient: lient Address:	Biltons Swinde LN6 9J	erby, Linco A	uth Scarle La In,	ne,				Job No Date Sa Date Rec	erence: 19112 umber: 20-91280 mpled: 26/02/2020 ceived: 02/03/2020
ontact:	Jay Fo								ested: 11/03/2020
ite Address:		Immingha			744 Durle Ok	ala Dalard		Samp	led By: Not Given
esting carried ou est Results: aboratory Refere	ence: 146549		d, ul. Pioniero	ow 39, 41-	/11 Ruda Sla	aska, Poland			op [m]: 3.00
le No.:	BH2	(AP							se [m]: 3.45 9 Type: U
mple Reference il Description:			ndy CLAY					Sample	e Type. U
imple Preparati		in natural	-						
As Received		Lic	uid Limit		Plastic I	_imit	Plast	icity Index	% Passing 425µm
Content	[%]		[%]		[%]			[%]	BS Test Sieve
27			45		25			20	100
90			CI	- C	\square	cv MV	CE		A line
20		CL		M	H				
10 -			<u> </u>						
•••••	••••	ML	м						
0 0	10 20	30		50 60	LIQUID			110 120	130 140 150
	L	egenu, ba	ISEU UN DO DE		sticity	tice for site in	Liquid	Limit	
		C Clay		L	Low		below		
		M Silt		I L	Medium		35 to		
				H V	High Very high		50 to 70 to		
				E	Extremely	hiah		90 ding 90	
ote: Moisture Co	ontent by BS 1	Orga 1377-2: 19		0				naterial (eg CHC))
emarks:	-1-2		•						
						Signed:			

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.



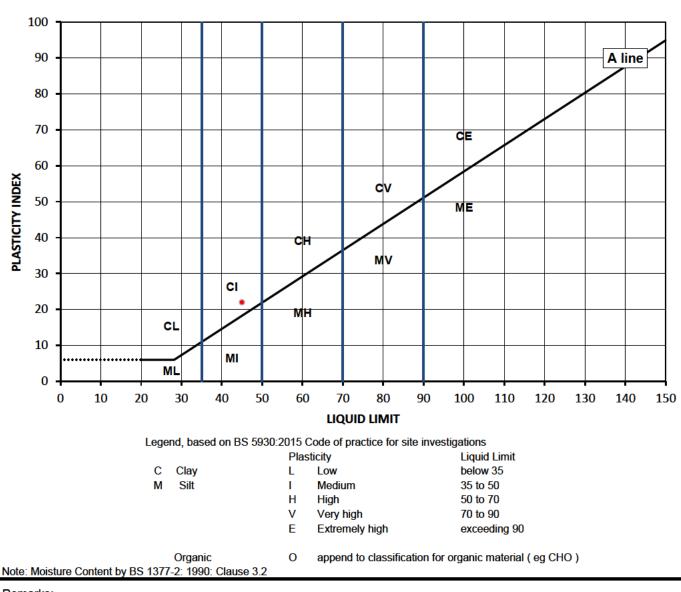
i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041		Tested in Acc	cordance with: BS 1377-2: 1990: Cla	ause 4.4 and 5	
Client:	G D Pickl	es Ltd		Client Refe	rence: 19112
Client Address:	Biltons Fa	rm, South Scarle Lane,		Job Nu	imber: 20-91280
	Swinderby	y, Lincoln,		Date Sar	npled: 24/02/2020
	LN6 9JA			Date Rec	eived: 02/03/2020
Contact:	Jay Fox			Date T	ested: 11/03/2020
Site Address:	Nordic, In	nmingham		Sample	ed By: Not Given
Testing carried out at it	2 Analytical	Limited, ul. Pionierow 39	, 41-711 Ruda Slaska, Poland		
Test Results:					
Laboratory Reference:	1465491			Depth To	pp [m]: 1.70
Hole No.:	BH3			Depth Bas	se [m]: 2.15
Sample Reference:	Not Given	1		Sample	Type: U
Soil Description:	Reddish b	prown organic CLAY with	woods		
		-			
Sample Preparation:	Tested af	ter >425um removed by h	and		
As Received Moist	ure	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]		[%]	[%]	[%]	BS Test Sieve
73		124	69	55	99

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.


i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

4041	Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5		
Client:	G D Pickles Ltd	Client Reference: 19112	
Client Address:	Biltons Farm, South Scarle Lane,	Job Number: 20-91280	
	Swinderby, Lincoln,	Date Sampled: 27/02/2020	
	LN6 9JA	Date Received: 02/03/2020	
Contact:	Jay Fox	Date Tested: 11/03/2020	
Site Address:	Nordic, Immingham	Sampled By: Not Given	
Testing carried out at it	2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland		
Test Results:			
Laboratory Reference:	1465492	Depth Top [m]: 2.00	
Hole No.:	BH5	Depth Base [m]: 2.45	
Sample Reference:	Not Given	Sample Type: U	
Soil Description:	Brown slightly gravelly sandy CLAY		
Sample Preparation:	Tested after washing to remove >425um		

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
24	45	23	22	94

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

	t Addr	ress:	Bilton Swind LN6 9	lerby, Lii JA	South	n Scarle L	ane,							Ĺ	Date S Date Re	Number ampled eceived	20-9128 28/02/20 02/03/20)20)20
Conta			Jay Fo		_												11/03/20	
	ddres			c, Immin	_										Sam	pled By	Not Give	en
		rried out at	iz Analy	tical Lin	ntea, i	ui. Pionie	row 39,	41-71	1 Ruda	a Slaska	a, Pola	ana						
	Res		44054	00													2.00	
abor Iole I	-	Reference	: 14654 BH6	93											Depth Depth B			
		eference:	Not G	iven										1		ase (m) le Type		
-		ption:			sand	y CLAY									Samp	ie Type	. 0	
		eparation:		d in natu		-												
As	Rece	eived Mois	ture		Liau	id Limit			Plas	tic Lim	it		Plas	sticity In	dex		% Passi	ng 425µm
		ontent [%]				[%]				[%]				[%]				st Sieve
		28				54				25				29				00
		20								20				20				
	100]																
	90																A line	
	80	┫──┼																
	70														\bigwedge			
													CE					
	60																	
×	00																	
ğ	50									С	v							
2	50	1										1	ME					
E	••																	
2	40	1						СН										
PLASTICITY INDEX									\checkmark	M	v							
-	30	4				-	•	\checkmark										
						CI												
	20	┫──┼					4	мн	\rightarrow			-						
				CL														
	10	┫──┼			\checkmark		+					—						
		••••••	••••••			MI												
	0			ML		-		_								_		
		0 10	20) 3	0	40	50	60	70	8	0	90	100	110	120	130	140	150
					h	d en DC	5020-2	045.0						_				
				Legena	, base	ed on BS	0930.Z	Plasti		Jacuce	IOF SI	te inves		s id Limit				
				со	lay			L	Low				belov					
					Silt			1	Mediur	n			35 to					
								Н	High				50 to					
									Very h	-			70 to					
								E	Extrem	nely hig	h		exce	eding 90				
					rganio		0.0	0	appen	d to cla	ssifica	ition for	organic	materia	(eg CH	IO)		
)te:	Mois	ture Conter	nt by BS	1377-2	1990): Clause	3.2											
em	arks:																	

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

4041	

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

lient			GDP	ickles Ltd	1	leste	d in Acco	ordance	WIUI. DS	377-2: 19	90: Ciau	se 4.4 and		lient Ref	erence.	19112	
	Addres	SS:		s Farm, S		Scarle I	ane									20-91280)
				lerby, Lind			uno,									25/02/20	
			LN6 9													02/03/20	
onta	ct:		Jay Fo	x												10/03/20	
	ddress	:	-	c, Imming	ham											Not Give	
		ed out at i				Pionier	ow 39.	41-71	1 Ruda S	laska, Po	bland				·····,		
	Resul				<i>.</i>		,			,							
		eference:	14654	94										Depth 7	op [m]:	4.00	
	lo.:		BH2											Depth Ba			
	e Refe	rence:	Not Gi	iven											e Type:		
	escripti		Brown	to black	CLAY												
	Deen	ti	Tooto	d in notur		dition											
		aration:		d in natur													
As		ed Moist	ture	L	.iquid				Plastic			Pla	sticity In	dex	0		g 425µm
	Cont	tent [%]			[%				[%]	_		[%]		_	BS Tes	t Sieve
		42			60)			2	5			35			10	00
	L <mark>00 -</mark>																
_	T																
	90															A line	\leq
	80																
	° 1																
	70 -						+					CE					
	60				_						\rightarrow						
Ĕ										cv							
PLASTICITY INDEX	50 -				_						\mathbf{X}	ME					
≻																	
2	40							~									
2								СН									
2	20									MV							
	30 -					СІ											
							\checkmark										
	20						1	мн									
				CL													
	10				\checkmark		+										
	ŀ	••••••	•••••			МІ											
	0 +			ML													
	0	10	20) 30	4	10	50	60	70	80	90	100	110	120	130	140	150
									LIQUI								
				Legend, l	based	on BS {	5930:20)15 Co			site inv	estidatior	IS				
				5,				Plastic					uid Limit				
				C Cla				LI	Low			belo	ow 35				
				M Si					Medium				o 50				
									High				o 70				
									Very high				o 90				
								ΕI	Extremel	y high		exc	eeding 90				
				0~	janic			0 8	annond +	o clocoifi	nation f		e motorial	(eg CH	0)		
ρ.	Moistur	re Conten	t by RS					0 0	appendit		auon i	ororgani	Linatena	(eg ch	0)		

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

KAS					_		
4041		Tested in A	Accordance with:	BS 1377-2: 1990: C	lause 4.4 and 5		Environmenta
Client:	G D Pickles Lt	d				Client Refe	rence: 19112
Client Address:	Biltons Farm,	South Scarle Lane,				Job Nu	imber: 20-91280
	Swinderby, Lin	icoln,				Date Sar	mpled: 25/02/2020
	LN6 9JA					Date Rec	eived: 02/03/2020
Contact:	Jay Fox					Date T	ested: 10/03/2020
Site Address:	Nordic, Immin	gham				Sampl	ed By: Not Given
Testing carried out at i	2 Analytical Lim	ited, ul. Pionierow	39, 41-711 Rud	la Slaska, Poland	d	-	
Test Results:							
Laboratory Reference:	1465495					Depth To	op [m]: 9.00
Hole No.:	BH2					Depth Bas	se [m]: 9.25
Sample Reference:	Not Given					Sample	Type: D
Soil Description:	Brown to grey	slightly gravelly sa	ndy CLAY				
Sample Preparation: As Received Moist		425um removed by Liquid Limit		stic Limit	Plastici	ty Index	% Passing 425µm
Content [%]		[%]		[%]	[9	-	BS Test Sieve
23		39		22	1	7	99
100							
90 -							A line
80 -							
70 -					CE		
× 60							
50				cv	ME		
≻							

MV

80

90

100

110

Liquid Limit

below 35

35 to 50 50 to 70

70 to 90

append to classification for organic material (eg CHO)

exceeding 90

120

130

140

CI

MI

40

50

CL

ML

30

Clay

Silt

Organic

20

С

М

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

MH

60

L

L

Н

v

Е

0

Legend, based on BS 5930:2015 Code of practice for site investigations Plasticity

Low

High

Medium

Very high

Extremely high

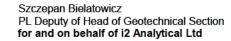
70

LIQUID LIMIT

PLASTICITY 40

30

20


10

0

Remarks:

0

10

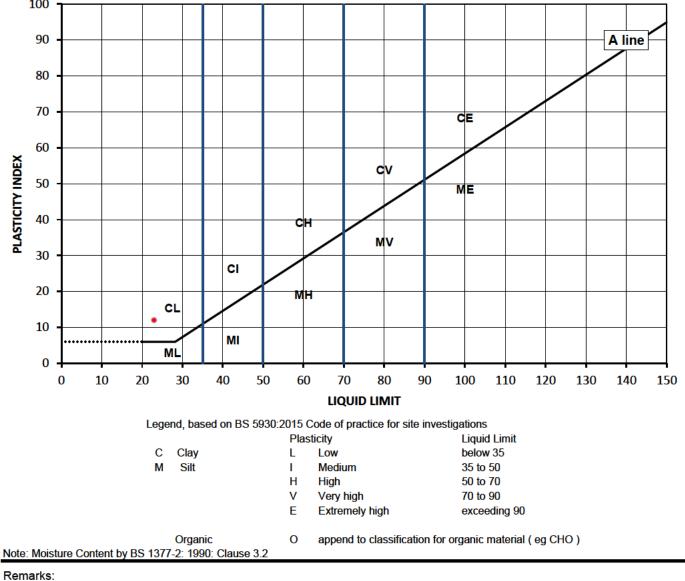
150

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

ontact: ite Address: esting carried out	Swinder LN6 9JA Jay Fox Nordic, I at i2 Analytic	Imming	ham	Pioniero	w 39, 4	1-711 Ru	ida Slaska,	Poland			Date Rec Date T	npled: 24 eived: 02 ested: 10 ed By: No	/03/202(/03/202()
est Results: aboratory Referen ole No.: ample Reference: oil Description: ample Preparatior	BH3 Not Give Brown to	en o dark b								I	Depth Bas	op [m]: 4.5 se [m]: 4.9 Type: D		
As Received Mo Content [%	oisture		iquid [%]	Limit	Т	Pla	astic Limit [%]		Plas	ticity Ind	dex		assing S Test	425µm Sieve
50*	-1		61				28			33			100	
100 90 80 70 60 50 40 30 20 10 10		CL		CI			CV		CE					
0	10 20 Le	30 egend, t				LIC	70 80 QUID LIM If practice fi		100 vestigations	110	120	130	140	150
		C Cla M Sil			P L H V E	Very	ium		belov 35 to 50 to 70 to	50 70 90 eding 90	(eg CHC			

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.



i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

041		Tested in Accord	ance with: BS 1377-2: 1990: Cl	ause 4.4 and 5	Environmental
Client:	G D Pickles Ltd			Client Reference	: 19112
Client Address:	Biltons Farm, Sou	ith Scarle Lane,		Job Number	20-91280
	Swinderby, Lincol	n,		Date Sampled	24/02/2020
	LN6 9JA			Date Received	: 02/03/2020
Contact:	Jay Fox			Date Tested	: 10/03/2020
Site Address:	Nordic, Immingha	m		Sampled By	: Not Given
Testing carried out at i2	Analytical Limited	, ul. Pionierow 39, 4	I-711 Ruda Slaska, Poland		
Test Results:					
aboratory Reference:	1465497			Depth Top [m]	: 9.00
Hole No.:	BH3			Depth Base [m]	9.25
Sample Reference:	Not Given			Sample Type	: D
Soil Description:	Brown slightly gra	velly clayey SAND			
Sample Preparation:	Tested after wash	iing to remove >425u	m		
As Received Moist	ure Liq	uid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]		[%]	[%]	[%]	BS Test Sieve
15		23	11	12	92

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

ient	Address:	Swinde LN6 9J	Biltons Farm, South Scarle Lane,Job Number: 20-91280Swinderby, Lincoln,Date Sampled: 26/02/2020LN6 9JADate Received: 02/03/2020Jay FoxDate Tested: 10/03/2020										
onta		Jay Fo											
	ddress:		, Immingh			744 Durle (Samp	led By:	Not Giver	า
	Results:	out at i2 Analyti	cai Limite	a, ul. Plonie	10W 39, 41	-711 Ruda 3	olaska, Pola	na					
	atory Refe		98							Depth T			
	No.:	BH4A								Depth Ba			
	le Referen			andy CLAY						Sample	e Type:	D	
	le Prepara		in natura	l condition									
As	Received	Moisture	Li	quid Limit		Plastic	: Limit		Plasticity	Index	9	6 Passin	g 425µm
	Conten	t [%]		[%]		[9	6]		[%]			BS Test	Sieve
	34			35		2	3		12			10	0
	100												
	90 -							+			[A line	4
	80							1					_
	70								CE				
	60 -												_
							cv						
	50							1	ME				
	40				- c	⊮ /	\bigwedge						
							мν						
	30			СІ									
	20				M	н							_
	10 -		CL										
		•••••	ML	м									
	0										-	-	
	0	10 20	30	40	50 6		80	90	100 11	0 120	130	140	150
							DLIMIT						
		l	egend, ba	ased on BS		Code of pra	ictice for sit	e investiç	ations Liquid Lim	it			
			C Clay		L	Low			below 35				
			M Silt		I L	Medium			35 to 50 50 to 70				
					H V	High Very hig	1		50 to 70 70 to 90				
					Ĕ	Extreme			exceeding	90			
			Orga		0	append	o classificat	tion for o	rganic mate	rial (eg CH	O)		
		Content by BS	1377-2: 19	990: Clause	3.2								
m	arks:												

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

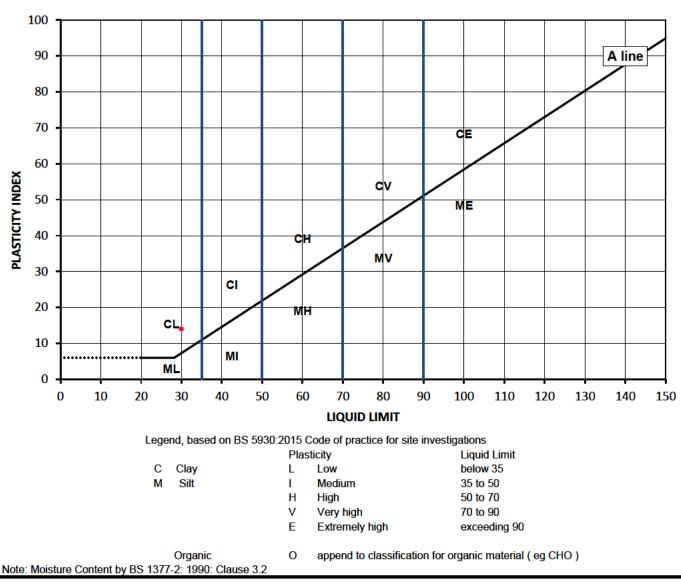
i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

estir	ddres	ried out at		[:] ox ic, Immi	-		onierov	w 39, 4	1-71	1 Ruc	la Slas	ka, Pol	and				Date T	ested:	02/03/2 10/03/2 Not Giv	020	
	Resu atory	ults: Reference																op [m]:			
	No.:		BH4A														-	se [m]:			
)le Re)escrij	ference:	Not G	Siven to brow	n car	ndy Cl											Sample	Type:	D		
	-	eparation:		ed in nat		-															
		eived Mois				uid Lin				Pla	stic Li	mit		P	lasticit	y Inde	x	0	√ Passi	ng 425	μm
	Co	ntent [%]				[%]					[%]				[%	6]			BS Te	st Sieve	e
		48*				36					24				1	2			1	00	
	100	-																			
	90																		A line		
	80																				
	70												+	CE							
×	60	┥					_		-				+								
	50	+										cv	+	ME							
PLASTICITY INDEX	40								сн												
PLAS	30									<		мv									
	20					С															
				CL					мн												
	10	-	•••••	ML	1	м	I														
	0	0 10) 2		0	40		0	60	7	0	80	90	100) 1 [.]	10	120	130	140	 150)
		0 10		0 2		10	5	0	00		UID L		50	100	, 1	10	120	150	110	150	
				Legend	l, bas	ed on l	BS 59				practio	e for si	te inve								
				C (Clay			E E	lastic	city Low					quid Lii Now 35						
					Silt			I		Mediu	um			35	5 to 50						
								H		High) to 70						
								V E		Very Extre	high mely hi	ah) to 90 (ceedin	a 90					
				C)rgan	ic		C					ation fo				eg CHC))			
to-	Moist	ture Conter	nt by BS)rgan : 199		ise 3.)	appei	nd to c	assifica	ation fo	r orga	nic mat	terial (eg CHC))			

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB



Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

4041	I ested in Accordance with: BS 1377-2: 1990: Clause 4.	4 and 5
Client:	G D Pickles Ltd	Client Reference: 19112
Client Address:	Biltons Farm, South Scarle Lane,	Job Number: 20-91280
	Swinderby, Lincoln,	Date Sampled: 26/02/2020
	LN6 9JA	Date Received: 02/03/2020
Contact:	Jay Fox	Date Tested: 10/03/2020
Site Address:	Nordic, Immingham	Sampled By: Not Given
Testing carried out at it	2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland	
Test Results:		
Laboratory Reference:	1465500	Depth Top [m]: 13.00
Hole No.:	BH4A	Depth Base [m]: 13.45
Sample Reference:	Not Given	Sample Type: D
Soil Description:	Brown to black very sandy CLAY with fragments of chalk	

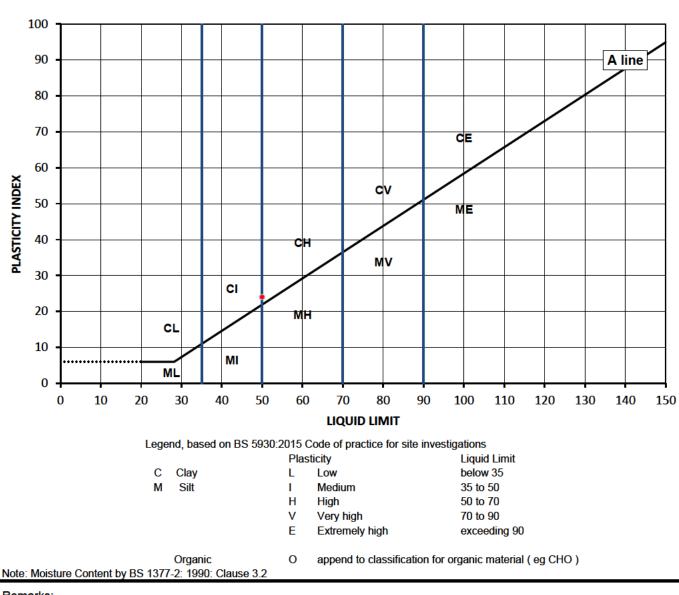
Sample Preparation: Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
25	30	16	14	

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.


i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

4041	Lested in Accordance with: BS 1377-2, 1990; Clause 4.4 and 5		
Client:	G D Pickles Ltd	Client Reference:	19112
Client Address:	Biltons Farm, South Scarle Lane,	Job Number:	20-91280
	Swinderby, Lincoln,	Date Sampled:	27/02/2020
	LN6 9JA	Date Received:	02/03/2020
Contact:	Jay Fox	Date Tested:	10/03/2020
Site Address:	Nordic, Immingham	Sampled By:	Not Given
Testing carried out at i2	2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland	-	
Test Results:			
Laboratory Reference:	1465501	Depth Top [m]:	5.50
Hole No.:	BH5	Depth Base [m]:	5.15
Sample Reference:	Not Given	Sample Type:	D
Soil Description:	Black to brown slightly sandy CLAY		
Sample Preparation:	Tested in natural condition		
As Received Moist	ure Liquid Limit Diactic Limit Diactic	city Index	% Passing 125um

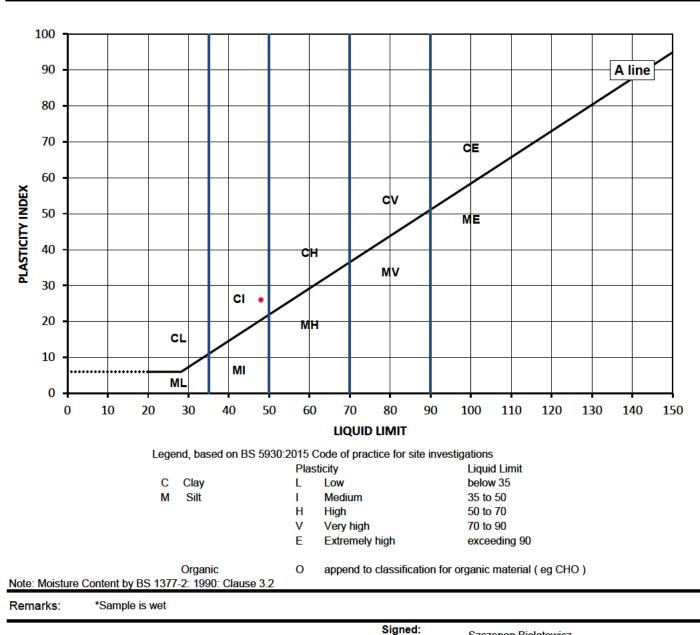
As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
45	50	26	24	100

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB



Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

	Tested in Accordance with: BS 1377-2, 1990. Clause 4.4 and 5		
Client:	G D Pickles Ltd	Client Reference:	19112
Client Address:	Biltons Farm, South Scarle Lane,	Job Number:	20-91280
	Swinderby, Lincoln,	Date Sampled:	27/02/2020
	LN6 9JA	Date Received:	02/03/2020
Contact:	Jay Fox	Date Tested:	10/03/2020
Site Address:	Nordic, Immingham	Sampled By:	Not Given
Testing carried out at it	2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland		
Test Results:			
Laboratory Reference:	1465502	Depth Top [m]:	9.50
Hole No.:	BH5	Depth Base [m]:	9.95
Sample Reference:	Not Given	Sample Type:	D
Soil Description:	Dark brown to brown slightly sandy CLAY		

Sample Preparation: Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
42*	48	22	26	100

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19112

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

4041

Client:

analysis.

G D Pickles Ltd

Clien	t Addr	ess:		is Farm, Jerby, Lii)JA		Scarle L	₋ane,									Date Sa	ampled	:: 20-91 I: 28/02 I: 02/03	/2020	
	ddres			c, Immin		Diania	20			de Ole	aka Da	land						: 10/03 r: Not G		
		ried out at	i2 Analy	tical Lin	ited, ul	. Pionie	row 39	, 41-1	'11 Ru	da Sla	ska, Po	land								
aboi Iole Samp	No.:	Reference	BH6 Not G		k organ	ic CLA	Y									Depth 1 epth Ba Sampl	ase [m]	: 6.45		
amp	ole Pre	eparation:	Teste	d in natu	iral con	dition														
As		eived Mois ontent [%]	ture		Liquid [%				Pla	astic L [%]	imit		P	lasticit [%]	-	ex		% Pas BS 1	sing 4 Test S	
		53			7	3				34				3	9				100	
	100]													1					7
	90	-			+		+											- <mark>A l</mark> ii	ne	
	80	-			+		╀			_		_								-
	70	-			+		╞						CE			$\left\{ \right.$				-
Ă	60				╉		╞				cv									
	50				╈		╞					┦	M	I						
PLASTICITY INDEX	40				╈		┢	CF	/		MV									-
•	30				╈	СІ		1	/											1
	20 10			CL				MF	1											
	0		•••••	ML		МІ														
	U	0 10) 2(0 3	0	40	50	60		70 2010	80	90	10	0 1	10	120	130	14	0 1	50
				Legend	based	on BS	5930:2	015 (ite inve	estigati	ons						
								Plas	ticity				Li	quid Lir						
					lay Silt			L	Low Med	ium				elow 35 5 to 50						
								Н	High				5) to 70						
								V E		high I high	nigh) to 90 (ceedin	g 90					
ote [.]	Moist	ture Contei	nt by BS		rganic 1990 [.]	Clause	32	0				ation fo		nic mat		eg CH	0)			
	arks:		11 DY DO	1371-Z.	1330.		J.Z													
a (1	ains.										Signe									

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for

Signed:

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

eference: 19112 Number: 20-91280 Sampled: 28/02/2020 Received: 02/03/2020 e Tested: 10/03/2020 npled By: Not Given Top [m]: 10.00 Base [m]: 10.45 ple Type: D % Passing 425µm BS Test Sieve
Number: 20-91280 Sampled: 28/02/2020 Received: 02/03/2020 e Tested: 10/03/2020 npled By: Not Given Top [m]: 10.00 Base [m]: 10.45 ple Type: D
Received: 02/03/2020 e Tested: 10/03/2020 npled By: Not Given Top [m]: 10.00 Base [m]: 10.45 ple Type: D % Passing 425µm
Received: 02/03/2020 e Tested: 10/03/2020 npled By: Not Given Top [m]: 10.00 Base [m]: 10.45 ple Type: D % Passing 425µm
e Tested: 10/03/2020 npled By: Not Given Top [m]: 10.00 Base [m]: 10.45 ple Type: D % Passing 425µm
Top [m]: 10.00 Base [m]: 10.45 ple Type: D % Passing 425µm
Base [m]: 10.45 ple Type: D % Passing 425µm
Base [m]: 10.45 ple Type: D % Passing 425µm
Base [m]: 10.45 ple Type: D % Passing 425µm
ple Type: D % Passing 425µm
% Passing 425µm
BS Test Sieve
100
A line
130 140 150
130 140 150

Organic Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Е

0

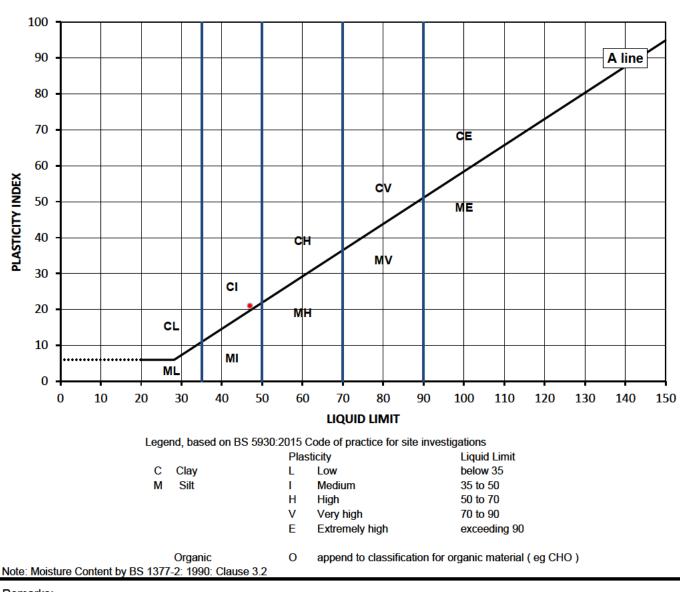
Very high Extremely high

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

exceeding 90

append to classification for organic material (eg CHO)


i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

4041	Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5		
Client:	G D Pickles Ltd	Client Reference:	19112
Client Address:	Biltons Farm, South Scarle Lane,	Job Number:	20-91280
	Swinderby, Lincoln,	Date Sampled:	26/02/2020
	LN6 9JA	Date Received:	02/03/2020
Contact:	Jay Fox	Date Tested:	10/03/2020
Site Address:	Nordic, Immingham	Sampled By:	Not Given
Testing carried out at it	2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland		
Test Results:			
Laboratory Reference:	1465505	Depth Top [m]:	7.00
Hole No.:	BH1	Depth Base [m]:	7.45
Sample Reference:	Not Given	Sample Type:	D
Soil Description:	Brown to black slightly sandy CLAY		
Sample Preparation:	Tested in natural condition		

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
37	47	26	21	100

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

SUMMARY REPORT

Summary of Classification Test Results

Tested in Accordance with:

4041 Client: Client Address:	G D Pickles Ltd Biltons Farm, South Scarle Lane, Swinderby, Lincoln, LN6 9JA	MC by BS 1377-2: 1990: Clause 3.2; WC by BS EN 17892-1: 2014; Atterberg by BS 1377-2: 1990: Clause 4.3, Clause 4.4 and 5; PD by BS 1377-2: 1990: Clause 8.2
Contact:	Jay Fox	
Cito Address:	Nordic Imminghom	

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19112 Job Number: 20-91280 Date Sampled: 24/02 - 26/02/2020 Date Received: 02/03/2020 Date Tested: 10/03 - 11/03/2020 Sampled By: Not Given

Site Address: Nordic, Immingham

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	2							Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	МС	wc	% Passing 425um	u	PL	PI	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
1465488	BH1	Not Given	1.00	1.45	U	Brown CLAY	Atterberg 1 Point	24		100	<mark>6</mark> 5	29	36					
1465489	BH1	Not Given	3.00	3.45	U	Brown CLAY	Atterberg 1 Point	37		100	61	34	27					
1465505	BH1	Not Given	7.00	7.45	D	Brown to black slightly sandy CLAY	Atterberg 1 Point	37		100	47	26	21					
1465490	BH2	Not Given	3.00	3.45	U	Brown slightly sandy CLAY	Atterberg 1 Point	27		100	45	25	20					
1465494	BH2	Not Given	4.00	4.60	D	Brown to black CLAY	Atterberg 1 Point	42		100	60	25	35					
1465495	BH2	Not Given	9.00	9.25	D	Brown to grey slightly gravelly sandy CLAY	Atterberg 1 Point	23		99	39	22	17					
1465491	BH3	Not Given	1.70	2.15	U	Reddish brown organic CLAY with woods	Atterberg 1 Point	73		99	124	69	55					
1465496	BH3	Not Given	4.50	4.95	D	Brown to dark brown CLAY	Atterberg 1 Point	50*		100	61	28	33					
1465497	BH3	Not Given	9.00	9.25	D	Brown slightly gravelly clayey SAND	Atterberg 1 Point	15		92	23	11	12					
1465498	BH4A	Not Given	6.00	6.45	D	Black to brown sandy CLAY	Atterberg 1 Point	34		100	35	23	12					

Note: # Non accredited; NP - Non plastic

Comments:

*Sample is wet

Signed:

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

SUMMARY REPORT

Summary of Classification Test Results

Tested in Accordance with:

4041 Client: Client Address:	G D Pickles Ltd Biltons Farm, South Scarle Lane, Swinderby, Lincoln, LN6 9JA	MC by BS 1377-2: 1990: Clause 3.2; WC by BS EN 17892-1: 2014; Atterberg by BS 1377-2: 1990: Clause 4.3, Clause 4.4 and 5; PD by BS 1377-2: 1990: Clause 8.2
Contact:	Jay Fox	
Cite Addresse:	Nordia Immingham	

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19112 Job Number: 20-91280 Date Sampled: 26/02 - 28/02/2020 Date Received: 02/03/2020 Date Tested: 10/03 - 11/03/2020 Sampled By: Not Given

Site Address: Nordic, Immingham

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	2							Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	МС	wc	% Passing 425um	ш	PL	PI	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
1465499	BH4A	Not Given	11.00	11.45	D	Black to brown sandy CLAY	Atterberg 1 Point	48*		100	36	24	12					
1465500	BH4A	Not Given	13.00	13.45	D	Brown to black very sandy CLAY with fragments of chalk	Atterberg 1 Point	25		100	30	16	14					
1465492	BH5	Not Given	2.00	2.45	U	Brown slightly gravelly sandy CLAY	Atterberg 1 Point	24		94	45	23	22					
1465501	BH5	Not Given	5.50	5.15	D	Black to brown slightly sandy CLAY	Atterberg 1 Point	45		100	50	26	24					
1465502	BH5	Not Given	9.50	9.95	D	Dark brown to brown slightly sandy CLAY	Atterberg 1 Point	42*		100	48	22	26					
1465493	BH6	Not Given	2.00	2.45	U	Brown slightly sandy CLAY	Atterberg 1 Point	28		100	54	25	29					
1465503	BH6	Not Given	6.00	6.45	D	Brown to black organic CLAY	Atterberg 1 Point	53		100	73	34	39					
1465504	BH6	Not Given	10.00	10.45	D	Brown to black organic CLAY	Atterberg 1 Point	58		100	72	34	38					
1465487	TP01 B1	Not Given	0.90	Not Given	В	Dark brown slightly gravelly slightly sandy CLAY	Atterberg 1 Point	23		96	55	28	27					

Note: # Non accredited; NP - Non plastic

Comments:

*Sample is wet

Signed:

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

0.60

0.40

0.20

0.00

0

TEST CERTIFICATE

Determination of California Bearing Ratio

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

UKAS TESTING										
4041			Teste	ed in Accord	ance with: BS	1377-4· 1990) [.] Clause 7		En	vironmental
Client:		G D Pickles Ltd						Client Reference:	19112	
Client Ad	dress:	Biltons Farm, S	outh Scarle L	ane,				Job Number:	20-91280	
		Swinderby, Linc						Date Sampled:	Not Given	
		LN6 9JA						Date Received:	02/03/2020	
Contact:		Jay Fox						Date Tested:	20/03/2020	
Site Add	ress:	Nordic, Imming	ham					Sampled By:	Not Given	
Testing of	carried out at i2	2 Analytical Limite	ed, ul. Pionie	row 39, 41-7	711 Ruda Slas	ka, Poland				
Test Re	esults:									
	ory Reference:	1465487						Depth Top [m]:	0.90	
Hole No.		TP01 B1						Depth Base [m]:	Not Given	
Sample I	Reference:	Not Given						Sample Type:	В	
Sample [Description:	Dark brown slig	htly gravelly s	slightly sand	y CLAY					
Specime	en Preparatior	1:								
Conditior	n	Remoulded					Cooking	lataila	Not soaked	I
Details							Soaking of Period of		NOL SUGREU	days
Dotails		Recompacted w	ith specified	standard ef	fort using 2.5k	g rammer	Time to s			days
								f swell recorded		mm
Material	retained on 20	mm sieve remov	ed	0	%			ty after soaking		Mg/m3
Initial Sp	ecimen details	Bulk dens	itv	1.90	Mg/m3		Surcharge	e applied	8	kg
		Dry densi	-	1.54	Mg/m3		5		4.9	kPa
		Moisture	content	23	%					
			F	Force v Pen	etration Plots	3				
2.	00									
1	80 -									
1.0							_			
1.	60 -							***		
						and and				
1.4	40						r i	→	🗕 Top da	ta
7	*								• T	
	20 -			~	1	1		1	🖛 Top val	ues
1 lied	.00 -								— Тор со	rrection
Force Applied	•								🛏 Base da	ata
8 0.	80 *								- Dase ua	ata
Ę								€	Base va	alues

Base Correction

Results	Curve		CBR Va	lues, %		Moisture
	correction applied	2.5mm	5mm	Highest	Average	Content %
TOP	No	6.4	6.6	6.6	6.8	23
BASE	No	7.0	7.1	7.1	0.0	25

3

Remarks: Test/ Specimen specific remarks: specific remarks: Signed: Szczepan Bielatowicz

4 Penetration mm

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

2

1

5

6

7

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

8

SUMMARY REPORT

Summary of Undrained Shear Strength Using Hand Vane Apparatus Test Results

Tested in Accordance with: In-house Method G074

Guideline for Hand Held Shear Vane Test, New Zealand

Geotechnical Society INC, August 2001

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 19112

Job Number: 20-91280

Date Received: 02/03/2020

Date Tested: 10/03/2020

Sampled By: Not Given

Date Sampled: 24/02 - 28/02/2020

 Client:
 G D Pickles Ltd

 Client Address:
 Biltons Farm, South Scarle Lane, Swinderby, Lincoln, LN6 9JA

 Contact:
 Jay Fox

 Site Address:
 Nordic, Immingham

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	2				Shear	Shear	Shear	Shear	Shear				
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks	Vane Reading 1 kPa	Vane Reading 2 kPa	Vane Reading 3 kPa	Vane Reading 4 kPa	Vane Reading Average kPa	Tv kPa			
1465488	BH1	Not Given	1.00	1.45	U	Brown CLAY		32	44	46	46	42				
1465489	BH1	Not Given	3.00	3.45	U	Brown CLAY		72	58	70	60	65				
1465490	BH2	Not Given	3.00	3.45	U	Brown slightly sandy CLAY		56	40	44	42	46				
1465491	BH3	Not Given	1.70	2.15	U	Reddish brown organic CLAY with woods		12	10	10	18	13				
1465492	BH5	Not Given	2.00	2.45	U	Brown slightly gravelly sandy CLAY		80	70	78	76	76				
1465493	BH6	Not Given	2.00	2.45	U	Brown slightly sandy CLAY		20	22	20	18	20				

Note: UTP - Unable To Penetrate

Comments:

Signed:

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

One Dimensional Consolidation Test

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-5: 1990: Clause 3

41					Tested in /	Accordance wi	th: BS 1377-5: 1990: Clause 3		
Client			G D Pickle	s Ltd				Client Reference: 1911	
Client	t Addre	SS:	Biltons Far Swinderby, LN6 9JA	m, South So Lincoln,	arle Lane,			Job Number: 20-9 Date Sampled: 25/02 Date Received: 02/03	2/2020
Conto	t.							Date Received: 02/0. Date Tested: 23/0.	
Conta	act. Address		Jay Fox Nordic, Im	mingham				Sampled By: Not (
					Pionierow 3	0 41-711 R	uda Slaska, Poland	Sampled by. Not	Siven
			z Analytical	Linnea, al.	I IOIIICION J	<i>3, 41-111</i>			
	Resu	its: Reference:	1465488					Depth Top [m]: 1.00	
Hole		vererence.	BH1					Depth Base [m]: 1.45	
		erence:	Not Given					Sample Type: U	
-		cription:	Brown orga	anic CLAY				oumpio rypo. o	
		onpuon.	j						
	0.760) 1							
	0.740) ┣━━━━			e,				
	0.720								
ttio	0.700								
S, R	0.680) [╈╋┿	
Voids Ratio	0.660) -	+				┼┼╎┡╲──┼─┼┼┼	┿┿┿╉╾╌┾	
>	0.640) -					┼┉╪╧╲╴╎╌╷┤╌╷	┿┿┿╋	
	0.620								
	0.600								
	0.580)					····	****	
	0.560								
	2.50								
le)	2.00				×	、			
Cv m²/yr (log time)	1.50					\mathbf{X}			
e	1.00					\rightarrow			
²/yr	0.50								
۲ ۲	0.00	ļ							
C		1		1	0		100	1000	1000
						Aj	oplied Pressure kPa		
Арр	lied	Voids	Μv	Cv	Cv	Csec	Preparation		
Pres		ratio			(t90, root				
ki (0.741	m2/MN	m2/yr	m2/yr		Index tests		
	0	0.741	0.61	2.4	3.9	0.00093	Orientation of the sample	Vertical	
4	0	0.702	0.51	1.1	1.1	0.00092	Particle density	assumed 2.65	Mg/m3
	0	0.674	0.42	1.4	1.6	0.0015	Liquid limit	N/A	%
	60	0.636	0.28	2.3	2.6	0.0025	Plastic limit	N/A	%
8	U	0.639	0.022				Specimen details	Initial Final	1
							Diameter	50.03 -	mm
							Height	20.15 18.96	mm
							Moisture Content	30 24	%
							Bulk density	1.98 2.01	Mg/m3
			 				Dry density	1.52 1.62 0.741 0.639	Mg/m3
			<u> </u>				Voids Ratio Saturation	109 101	%
							Avg. temperature for test	22.0	°C
							Avg. temperature for test Swelling Pressure	22.0 Not measured	°C kPa

Remarks:

Signed:

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

One Dimensional Consolidation Test

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-5: 1990: Clause 3

41					Tested in /	Accordance w	ith: BS 13	77-5: 199	0: Claus	se 3									
Clien	t		G D Pickle	s Ltd								С	lier	t Reference	:e: 191	12			
Clien	t Addre	ess:	Biltons Far Swinderby, LN6 9JA	m, South S Lincoln,	carle Lane,								Da	Job Numb ate Sample te Receive	ed: 25/0	02/20	20		
Conta	act:		Jay Fox											Date Teste	ed: 23/0	03/20	20		
Site /	Addres	S:	Nordic, Im	mingham										Sampled E	By: Not	Give	n		
Testi	ng cari	ried out at i	2 Analytical	Limited, ul.	Pionierow 3	9, 41-711 R	uda Slas	ka, Pola	nd					-	-				
Test	Resu	ilts:																	
		Reference:	1465489										De	epth Top [n	n]: 3.00)			
Hole			BH1										Dep	oth Base [r	n]: 3.45	5			
Sam	ole Ref	erence:	Not Given										S	ample Typ	e: U				
Sam	ple Des	scription:	Brown CLA	Y															
	1.000) . 																	
	0.950) - Ference			e _{o e}				_	-	\vdash	_				_	_	┝┼╴	
	0.900	, 					74						Ц					Ц	
								~											
tio	0.850																		
Å.	0.800	D -			╉──┼		┽┼┼┼		_	1	\vdash			+				┢┝┝	+++
Voids Ratio	0.750) 			╉───┼				_	œ -	Þ	+			$\left - \right $	_	+-	┝┼╴	+++
>	0.700	o -							_	-		-0					_	⊢⊢	
	0.650																		
	0.600										П								
	0.550	D -							_		\vdash	-		-		-			
	0.500)																	
(2.50)															_		
Cv m ² /yr (log time)	2.00									-									
bo	1.50						- *	*				_	_						
ž	1.00									*		-*						Ħ	
m²/	0.50								_										
S	0.00	1		1	10		1(00		-			1	000					1000
						A	pplied P	ressure	kPa										
_	olied	Voids	Μv	Cv	Cv	Csec	Pr	eparatio	n										
	sure Pa	ratio	m2/MN	(150, 10g) m2/yr	(t90, root m2/yr														
	0	0.976	-		-	-	In	dex tests											
					N/A	N/A					nnlo	Г	Ve	ertical					
2	20	0.961	0.38	N/A			0	ientatior		e san	lible								
2	20 10	0.947	0.37	N/A	N/A	N/A	Pa	rticle de	nsity	san	ilhie	ŀ	ass	sumed	2.65	Mg	1/m 3		
2 4 8	20 10 30	0.947 0.915	0.37 0.41	N/A 1.5	N/A 5	N/A 0.00064	Pa Lie	nticle de quid limit	nsity	e san	libie	ŀ	ass	N/A	2.65	%	j/m 3		
2 4 8	20 40 80 60	0.947 0.915 0.869	0.37 0.41 0.3	N/A 1.5 1.5	N/A 5 1.6	N/A 0.00064 0.0031	Pa Lie	rticle de	nsity	e san	lipie		ass		2.65		;/m 3		
2 4 8 1 3	20 10 30 60 20	0.947 0.915 0.869 0.806	0.37 0.41 0.3 0.21	N/A 1.5 1.5 0.99	N/A 5 1.6 0.97	N/A 0.00064 0.0031 0.0025	Pa Lio Pl	nticle de quid limit astic limi	nsity t		lipie		ass	N/A N/A		%	j/m 3		
2 4 8 1 3 3	20 40 80 60	0.947 0.915 0.869	0.37 0.41 0.3	N/A 1.5 1.5	N/A 5 1.6	N/A 0.00064 0.0031	Pa Lio Pla Sp	nticle de quid limit	nsity t		npie	F	ass II	N/A N/A nitial 0.11	2.65 Final	%		-	
2 4 8 1 3 3	20 10 30 60 20 40	0.947 0.915 0.869 0.806 0.721	0.37 0.41 0.3 0.21 0.15	N/A 1.5 1.5 0.99	N/A 5 1.6 0.97	N/A 0.00064 0.0031 0.0025	Pa Lia Pl Sp Di He	nticle de quid limit astic limi pecimen ameter eight	nsity it details	5	npie		ass li 5	N/A N/A nitial 0.11 0.07	Final - 17.62	% % mr mr	n		
2 4 8 1 3 3	20 10 30 60 20 40	0.947 0.915 0.869 0.806 0.721	0.37 0.41 0.3 0.21 0.15	N/A 1.5 1.5 0.99	N/A 5 1.6 0.97	N/A 0.00064 0.0031 0.0025	Pa Lia Pl Sp Di Ha	article de quid limit astic limi pecimen ameter eight pisture C	nsity it details content	5	npie		ass li 5 2	N/A N/A 0.11 0.07 37	Final - 17.62 32	% % mr mr %	n n		
2 4 8 1 3 3	20 10 30 60 20 40	0.947 0.915 0.869 0.806 0.721	0.37 0.41 0.3 0.21 0.15	N/A 1.5 1.5 0.99	N/A 5 1.6 0.97	N/A 0.00064 0.0031 0.0025	Pa Lid Pl Sp Di He Bu	article de quid limit astic limi pecimen ameter eight pisture C ilk densi	nsity it details content	5	ilbie		ass li 5	N/A N/A nitial 0.11 0.07 37 1.84	Final - 17.62 32 2.02	% mr mr % Mg	n n 1/m3	3	
2 4 8 1 3 3	20 10 30 60 20 40	0.947 0.915 0.869 0.806 0.721	0.37 0.41 0.3 0.21 0.15	N/A 1.5 1.5 0.99	N/A 5 1.6 0.97	N/A 0.00064 0.0031 0.0025	Pa Lid Pl Sp Di He Bu Dr	nticle de quid limit astic lim pecimen ameter eight pisture C ilk densi y densit	nsity t details content ty	5	ilbie		ass li 5 2	N/A N/A 0.11 0.07 37 1.84 1.34	Final - 17.62 32 2.02 1.53	% mr mr % Mg	n n	3	
2 4 8 1 3 3	20 10 30 60 20 40	0.947 0.915 0.869 0.806 0.721	0.37 0.41 0.3 0.21 0.15	N/A 1.5 1.5 0.99	N/A 5 1.6 0.97	N/A 0.00064 0.0031 0.0025	Pa Lid Pl Di Di Ha Bu Dr Vo	article de quid limit astic limi pecimen ameter eight pisture C ilk densi	nsity it details content ty / o	5	iipie		ass li 5 2	N/A N/A 0.11 0.07 37 1.84 1.34	Final - 17.62 32 2.02	% mr mr % Mg	n n 1/m3	3	
2 4 8 1 3 3	20 10 30 60 20 40	0.947 0.915 0.869 0.806 0.721	0.37 0.41 0.3 0.21 0.15	N/A 1.5 1.5 0.99	N/A 5 1.6 0.97	N/A 0.00064 0.0031 0.0025	Pa Lia Pl Di He Mu Bu Dr Va Sa	nticle de quid limit astic lim pecimen ameter sight pisture C Ilk densi y densit pids Rati	nsity it details content ty v	s t	-		ass li 5 2	N/A N/A 0.11 0.07 37 1.84 1.34 .976	Final - 17.62 32 2.02 1.53 0.735	% mr mr % Mg	n n g/m3 g/m3	3	
2 4 8 1 3 3	20 10 30 60 20 40	0.947 0.915 0.869 0.806 0.721	0.37 0.41 0.3 0.21 0.15	N/A 1.5 1.5 0.99	N/A 5 1.6 0.97	N/A 0.00064 0.0031 0.0025	Pa Lia Pl Di Di He Bu Dr Va Sa Sa Sv	rticle de quid limit aastic lim becimen ameter eight bisture C ilk densi y densit vids Rati ituration	nsity it details content ty / o erature ressure	; t e for †	test		ass	N/A N/A 0.11 0.07 37 1.84 1.34 .976 101	Final 17.62 32 2.02 1.53 0.735 115	% mr mr % Mg Mg	n n g/m3 g/m3	3	

Note: Cv corrected to 20°C

Remarks: Stage 1,2 - swelling; N/A - not applicable

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

signea:

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

One Dimensional Consolidation Test

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

41					Tested in	Accor	dance	e witl	h: BS	1377-5	5: 1990	: Clau	se 3							Envi	ontra	ental
Client	t		G D Pickle	s Ltd											C	lien	t Referenc	e: 19112	2			
Client	t Addre	ess:	Biltons Far Swinderby LN6 9JA		Scarle Lane,											Da	Job Numbe ite Sample te Receive	d: 26/02	/2020			
Conta	act:		Jay Fox													1	Date Teste	d: 23/03	/2020)		
Site /	Address	S:	Nordic, Im	mingham												:	Sampled B	y: Not G	Given			
Testi	ng carr	ied out at i	2 Analytical	Limited, ul	. Pionierow	39, 4 1	1-711	1 Ru	da S	laska,	Polar	nd										
Test	Resu	Its:																				
Labor	ratory F	Reference:	1465490													De	pth Top [m	n]: 3.00				
Hole	No.:		BH2													Dep	th Base [m	n]: 3.45				
Samp	ole Ref	erence:	Not Given													S	ample Typ	e: U				
Samp	ple Des	scription:	Brown slig	htly sandy (CLAY																	
	0.820																					_
		L			- e,																	1
	0.800)						-					-									1
	0.780)					-	_					-		_					_		-
•	0.760) 🗕 —			-	\geq	$ \rightarrow$	_					_									
Voids Ratio	0.740							\checkmark														
s R									∇					П								
Voic	0.720)				_						-										1
-	0.700)					-			\rightarrow			-	\vdash	-							1
	0.680)					_	_			\sim		_		_		_					4
	0.660																					
														П]
	0.640) <u> </u>																				1
	0.620)																				J
	2.50																					-
Cv m²/yr (log time)	2.00														_							_
g tii	1.50							_			~				_							_
୧	1.00						x _	_		-			_		_							_
² /yr	0.50							_					_		_				_			-
E >	0.00	Ļ			-					<u> </u>												-
0		1			10					100						1	000				10	0000
								Ар	plied	Press	sure k	Pa										
	olied	Voids	Mv	Cv	Cv	C	sec			Prepa	ration											
	sure	ratio) (t90, root	t ĭ																
	Pa	0.000	m2/MN	m2/yr	m2/yr	_		_														
	020	0.806	0.94	- N/A	- N/A	0.0	-	2		Index Orient		of the	a can	nnlo	Г	Ve	ertical					
	0	0.752	0.54	0.99	1.3		0005			Partic			5 301	iipie	ŀ			2.65	Mg/n	n3		
	80	0.720	0.45	1.1	1.4		0013			Liquid		,			ŀ		N/A		%			
	60	0.681	0.29	1.5	1.6	0.	0025	j -		Plasti	c limit				Ē		N/A		%			
8	30	0.686	0.037												-							
———					1	1				Speci		letails	S		┟		nitial 0.06	Final				
											ate-											
								4		Diame					⊦			- 18 79	mm mm			
										Heigh	t	ontent	t		ļ	2	0.14 ′		mm			
											t ure Co		t			2	0.14 · 32			n3		
										Heigh Moistu	t ure Co lensity	/	t			2	0.14 ⁻ 32 .94	27 1.99	mm %			
										Heigh Moistu Bulk o Dry de Voids	t ure Co lensity ensity Ratio	/	t			2	0.14 // 32 1.94 1.47 .806 (27 1.99 1.57 0.686	mm % Mg/n Mg/n			
										Heigh Moista Bulk o Dry de Voids Satura	t ure Co lensity ensity Ratio ation	/				2	0.14 32 1.94 1.47 .806 (106	27 1.99 1.57	mm % Mg/n Mg/n %			
										Heigh Moistu Bulk o Dry de Voids Satura Avg. t	t ure Co lensity ensity Ratio ation empe	/ rature	e for	test		2 1 1 0	0.14 32 1.94 1.47 806 (1 106 22.0	27 1.99 1.57 0.686 103	mm % Mg/n Mg/n % °C			
										Heigh Moista Bulk o Dry de Voids Satura	t ure Co lensity ensity Ratio ation empe ng Pro	/ rature essur	e for i			2 1 1 0	0.14 32 1.94 1.47 .806 (106	27 1.99 1.57 0.686 103	mm % Mg/n Mg/n %			

Note: Cv corrected to 20°C

Remarks: N/A - not applicable

Signed:

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

One Dimensional Consolidation Test

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-5: 1990: Clause 3

1				Tested in A	Accordance w	ith: BS 13	377-5: 1990:	Clause 3							
Client:		G D Pickle													
lient A	ddress:	Biltons Far Swinderby, LN6 9JA	m, South Sc , Lincoln,	arle Lane,						Da	ate San	npled: 24	4/02/2	020	
ontact	-	Jay Fox													
ite Ado		Nordic, Im	mingham												
	carried out at			Pionierow 3	9. 41-711 R	uda Sla	ska, Polan	d			Int Reference: 19112 Job Number: 20-91280 ate Sampled: 24/02/2020 Date Tested: 12/03/2020 Sampled By: Not Given				
	esults:		, u.		-,		, start								
	ory Reference	; 1465491								De	epth To	p (m); 1.	70		
lole No		BH3													
	Reference:	Not Given								-					
ample	Description:	Reddish br	rown organic	CLAY with	woods										
	2.300														
2	2.250			e.		┥┥┥┥							+	++	
2	2.200 -					┥┥┥┥	+		┼─┼─				++	++	
。 2	2.150 -			<u> </u>	\rightarrow								+		
c Mati	2.100 -										4				
s	2.050														
	2.000 -					111									
1	.950 -										-				
1	.900 -						$ \rightarrow $		+				++	-+-+	
1	.850 -												+		
1	.800						ſ								
e 50	0.00														
1 i	0.00														
ຍິ່ງ	0.00			<u> </u>											
5	0.00				\mathbf{X}										
Ê (0.00				×		<u> </u>								
Ö	1		1	D	A		00 ressure kf	Pa		1	000				100
Applie	d Voids	Mv	Cv	Cv	Csec		reparation								
Pressu kPa		m2/MN	(t50, log) m2/yr	(t90, root m2/yr											
0	2.257	-	-	-	-		dex tests					•			
20	2.193	0.98	28	17	0.0025		rientation o		nple			2.65		a/m-0	
40 80	2.124 2.017	1.1 0.86	5.1 0.44	11 2.8	0.0019 N/A		article den: quid limit	sity				2.05			
160		0.79	0.25	0.56	0.0088		lastic limit				N/A	1	%		
80	1.851	0.11										•			
							pecimen de	etails			nitial 0.11	Fina			
							iomet					-	m		
							iameter eight					17.57			
						Н	iameter eight loisture Col	ntent			0.07 73	17.57 68		m	
						H M B	eight loisture Col ulk density			2	0.07 73 1.40	68 1.56	7 m %	m g/m3	
						H M B D	eight loisture Col ulk density ry density			2	0.07 73 1.40 0.81	68 1.56 0.93	7 m % M	m	
						H M D V	eight loisture Col ulk density ry density oids Ratio			2	0.07 73 1.40 0.81 .257	68 1.56 0.93 1.851	7 m % M 1	m g/m3 g/m3	
						H M D V S	eight loisture Col ulk density ry density oids Ratio aturation		test	2	0.07 73 1.40 0.81 .257 85	68 1.56 0.93	7 m % M	m g/m3 g/m3	
						H M D V S A	eight loisture Col ulk density ry density oids Ratio	ature for	test	2	0.07 73 1.40 0.81 .257 85 22	68 1.56 0.93 1.851 97	7 m % M M I %	m g/m3 g/m3 ¢ Pa	

Remarks: N/A - not applicable

Signed:

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

One Dimensional Consolidation Test

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-5: 1990: Clause 3

41					Tested in /	Accordance w	ith: BS 13	77-5: 1990: Claus	e 3						
Clien		2001	G D Pickle		and a d							nce: 191			
Clien	nt Addre	ess:	Biltons Fai Swinderby	rm, South Sc	arle Lane,							ber: 20-9 bled: 27/0			
			LN6 9JA	, Lincolii,								ved: 02/(
Cont	act		Jay Fox									sted: 23/0			
	Addres	S:	Nordic, Im	mingham								By: Not			
				Limited, ul.	Pionierow 3	89, 41-711 R	uda Slas	ka, Poland				-) -			
Test	t Resu	ılts:													
		Reference:	1465492							Dep	oth Top	[m]: 2.00)		
Hole	No.:		BH5							Dept	h Base	[m]: 2.4	5		
Sam	ple Ref	erence:	Not Given							Sa	mple T	ype: U			
Sam	ple Des	scription:	Brown slig	htly gravelly	sandy CLA	Y									
	0.630) -													
	0.620				eo										
	0.610	0 -			*										
.0	0.600	D	+				┥┥┥┥			┝╾┝╾┝╼┝╼┝				++-	
Voids Ratio	0.590	D -				$\rightarrow \rightarrow$	+++		- - -	┝━┝━┝┝				++-	
oids	0.580	o -			-										
2	0.570														
	0.560														
	0.550	D													
	0.540	D -													
	0.530) _L													
	50.00														
ne)	40.00														
Cv m ² /yr (log time)	30.00											_			
<u>e</u>	20.00											_			
2/yr	10.00)				\rightarrow						_			
ž	0.00					*	++*+	— *							ЩĻ
0		1		1(0	•	10 Debied Dr	10 essure kPa		10	000				1000
-					-	A									
	olied	Voids	Mv	Cv (t50, log)	Cv	Csec	Pr	eparation							
	ssure Pa	ratio	m2/MN	m2/yr	m2/yr										
	0	0.629	-	-	-	-	Inc	lex tests							
	20	0.610	0.61	28	36	0.00035		ientation of the	sample		tical		_		
	40	0.598	0.35	4.3	21	0.00035		rticle density			umed	2.65	Mg/n	13	
	80 60	0.582	0.25 0.18	3.5 3.5	8 5.4	0.00088		juid limit astic limit			/A /A				
	B0	0.561	0.014	5.5	5.4	0.0010							/0		
							Sp	ecimen details			itial	Final			
								ameter			.15	-	mm		
			 					eight Disture Content			.19 24	19.34 24	mm %		
								lk density			<u>02</u>	2.10	Mg/n	13	
								y density		1.	63	1.70	Mg/n		
							Vo	ids Ratio			629	0.561			
							Sa	turation		1	03	112	%		
							-				00	0	0.0		
								g. temperature			22.		°C		
							Sv)	1	22. Not mea		°C kPa %		

Remarks:

Signed:

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

Page 1 of 1

One Dimensional Consolidation Test

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-5: 1990: Clause 3

41					Tested in	Accorda	ince w	ith: BS	1377-5	: 1990 : (Clause	3							-		
Clien	t		G D Pickle	s Ltd									C	Clier	nt Re	eferen	ice: 19	9112			
Clien	t Addre	ess:	Biltons Far Swinderby, LN6 9JA	rm, South So , Lincoln,	carle Lane,									Da	ate S	Sampl	oer: 20 led: 28 red: 02	3/02/2	020		
Conta	act:		Jay Fox														ed: 12				
Site /	Addres	S:	Nordic, Im	mingham											San	pled	By: No	ot Giv	en		
Testi	ng carr	ried out at i	2 Analytical	Limited, ul.	Pionierow 3	39, 41-	711 R	uda S	Slaska,	Poland	1						-				
Test	Resu	ilts:																			
		Reference:	1465493											D	epth	Top (m]: 2.	00			
Hole			BH6														m]: 2.				
Sam	ole Ref	erence:	Not Given														pe:U				
Sam	ple Des	scription:	Brown CLA	ΑY																	
	0.780)																			
		+			• e _o																
	0.760				4									Π						П	
	0.740)					\checkmark														
0	0.720)					+	\succ				_	_	⊬⊦						┿	
Rati	0.700)			ļļ			Щ.	N.					Щ	H		_			\perp	44
Voids Ratio	0.680								\square												
Noi										0				Π							
	0.660) 												Ħ	ΗT		<u> </u>				
	0.640)					+-+-							┢┼╴	⊢					┿	+++
	0.620) -					_							⊢	4		_	_		⊢⊦	
	0.600													Ш							
	0.580)											-								
	5.00	1																			
Cv m ² /yr (log time)	4.00												-				_				
bo	3.00					$\overline{}$						_	-				_				
Ĕ	2.00					\rightarrow			<u></u>	*		_	-				_				
m²/j	1.00								_								_				
S	0.00) <u>"</u> 1		1	0				100				_		000)	_				10000
					0		A	pplied		ure kP	a				000	,					10000
App	lied	Voids		Cv	Cv			1	Prepa												
_	sure	ratio	Μv		(t90, root	Cs	ec														
	Pa		m2/MN	m2/yr	m2/yr																
	0	0.773	-	-	-	-	0.77		Index												
	20 10	0.754 0.738	0.55 0.48	3.9 1.5	4.7 2.7	0.00				ation o		ample	'		ertic sum		2.65	_	la/m		
	80 80	0.730	0.40	2	3.2	0.00			Liquid	le dens limit	aty		ŀ		N/A		2.00	^w	lg/m:	2	
	60	0.677	0.25	1.5	6.8	0.00			Plasti				ŀ		N/A			%			
8	80	0.680	0.022										_								
8			0.022							men de	tails		[nitia		Final				
8			0.022				_		Diame	eter	etails		ŀ	5	0.04	1	-	m	ım		
8			0.022						Diame Heigh	eter t				5	0.04	1	- 18.99	n 9 n	nm		
8			0.022						Diame Heigh Moiste	eter t ure Con				5	0.04 0.05 28	4 5	- 18.99 28	n n %	ım 5	3	
8			0.022						Diame Heigh Moiste	eter t ure Con lensity				5	0.04	5	- 18.99	n 7 % 8	nm		
8			0.022						Diame Heigh Moiste Bulk o Dry de Voids	eter t ure Con lensity ensity Ratio				5	0.04 0.05 28 1.92 1.49 0.773	5	- 18.99 28 2.01 1.58 0.680	n) n % N N	nm 5 Ig/m: Ig/m:		
8			0.022						Diame Heigh Moiste Bulk o Dry de Voids Satura	eter t ure Con lensity ensity Ratio ation	ntent			5	0.04 0.05 28 1.92 1.49	4 5 3	- 18.99 28 2.01 1.58 0.680 108	m 9 m % N 0	im g/m: g/m: g/m:		
									Diame Heigh Moiste Bulk o Dry de Voids Satura Avg. t	eter t ure Con lensity ensity Ratio ation empera	ntent ature fo	or test		5	0.04 28 1.92 1.49 .773 97	4 5 3 22.0	- 18.99 28 2.01 1.58 0.680 108	m 9 m % N 0 9	im 5 1g/m: 1g/m: 5 C		
									Diame Heigh Moist Bulk o Dry de Voids Satura Avg. t Swelli	eter t ure Con lensity ensity Ratio ation	ntent ature fo		[5	0.04 28 1.92 1.49 .773 97	4 5 3	- 18.99 28 2.01 1.58 0.680 108	m 9 m % N 0 9	im Ig/m Ig/m Ig/m C Pa		

Note: Cv corrected to 20°C

Remarks:

Signed:

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

e1of1 Da

4041 Jay Fox G D Pickles Ltd Biltons Farm South Scarle Lane Swinderby Lincoln LNG 9JA

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: jay@gdpickles.co.uk

Analytical Report Number : 20-90870

Project / Site name:	Nordic, Immingham	Samples received on:	02/03/2020
Your job number:	19112	Samples instructed on:	05/03/2020
Your order number:	19112-I2	Analysis completed by:	17/03/2020
Report Issue Number:	1	Report issued on:	19/03/2020
Samples Analysed:	15 soil samples		

Zina Abdul Razzak Senior Quality Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Iss No 20-90870-1 Nordic, Immingham 19112

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

4041 772C

Project / Site name: Nordic, Immingham Your Order No: 19112-I2

Lab Sample Number				1463234	1463235	1463236	1463237	1463238
Sample Reference				TP01	TP01	TP01	TP05	TP06
Sample Number				D1	D2	D3	D1	D1
Depth (m)				0.05-0.15	0.10-0.50	0.70	0.20-0.50	0.20-0.50
Date Sampled				25/02/2020	25/02/2020	25/02/2020	24/02/2020	24/02/2020
Time Taken	1	r		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		2 _	Accreditation Status					
Analytical Parameter	Units	Limit of detection	creditat Status					
(Soil Analysis)	its	tio	itat					
		5 T	ion					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	18	16	17	33	15
Total mass of sample received	kg	0.001	NONE	0.44	0.40	0.40	0.44	0.43
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics	.							
pH - Automated	pH Units	N/A	MCERTS	10.0	7.8	7.5	7.4	8.4
<u>Total Cyanide</u> Total Sulphate as SO₄	mg/kg %	1 0.005	MCERTS MCERTS	< 1 0.195	< 1	< 1 0.615	< 1	< 1 1.49
Water Soluble SO4 16hr extraction (2:1 Leachate	70	0.000		0.200		0.010		2.15
Equivalent)	g/l	0.00125	MCERTS	0.30	-	2.0	-	3.1
Water Soluble SO4 16hr extraction (2:1 Leachate		1.05		202		1070		2122
Equivalent) Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	1.25	MCERTS	303	-	1970	-	3130
Total Sulphur	mg/l %	0.5	MCERTS MCERTS	47 0.216	-	94 0.228	-	28 0.661
Ammonium as NH ₄	% mg/kg	0.005	MCERTS	0.216	-	6.2	-	8.3
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	0.06	-	0.62	-	0.83
Organic Matter	%	0.1	MCERTS	6.4	2.4	2.3	6.4	2.9
Water Soluble Nitrate (2:1) as N (leachate equivalent)	mg/l	2	NONE	< 2.0	-	< 2.0	-	< 2.0
Total Bhowels								
Total Phenois		1	MOEDTO	. 1.0	. 1.0	. 1.0	. 1.0	- 1.0
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.30
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.31
Phenanthrene	mg/kg	0.05	MCERTS	0.98	1.1	< 0.05	0.81	2.8
Anthracene	mg/kg	0.05	MCERTS	0.19	< 0.05	< 0.05	0.21	0.67
Fluoranthene Pyrene	mg/kg mg/kg	0.05	MCERTS MCERTS	1.8 1.6	0.83	< 0.05 < 0.05	1.7 1.4	4.2 3.9
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.3	0.42	< 0.05	1.4	3.2
Chrysene	mg/kg	0.05	MCERTS	1.3	0.51	< 0.05	0.96	2.9
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.6	0.44	< 0.05	1.2	3.2
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.73	0.20	< 0.05	0.52	1.0
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.0	0.24	< 0.05	0.70	2.0
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.55	< 0.05	< 0.05	0.29	1.0
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.74	< 0.05	< 0.05	0.54	1.3
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	11.9	4.52	< 0.80	9.41	26.7
	• •••9/ •v9	0.0	HOLNIJ	11.7	1132	\$ 0.00	5.11	2017
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.3	18	13	18	12
Barium (aqua regia extractable)	mg/kg	1	MCERTS	170	130	130	120	220
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	3.0	1.1	0.98	2.6	2.6
Boron (water soluble)	mg/kg	0.2	MCERTS	2.7	3.7	2.8	9.3	5.3
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.6	< 0.2	< 0.2	0.6	< 0.2
Chromium (hexavalent) Chromium (aqua regia extractable)	mg/kg mg/kg	4	MCERTS MCERTS	< 4.0 67	< 4.0 33	< 4.0 32	< 4.0 49	< 4.0 37
Copper (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	100	23	25	49	27
Lead (aqua regia extractable)	mg/kg	1	MCERTS	92	33	25	47	36
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	19	35	33	34	25
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	62	51	45	77	53
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	320	100	98	190	120

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

4041 MCERTS Analytical Report Number: 20-90870

Project / Site name: Nordic, Immingham Your Order No: 19112-I2

Lab Sample Number				1463234	1463235	1463236	1463237	1463238
Sample Reference				TP01	TP01	TP01	TP05	TP06
Sample Number				D1	D2	D3	D1	D1
Depth (m)				0.05-0.15	0.10-0.50	0.70	0.20-0.50	0.20-0.50
Date Sampled				25/02/2020	25/02/2020	25/02/2020	24/02/2020	24/02/2020
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Magnesium (water soluble)	mg/kg	5	NONE	17	-	190	-	130
Magnesium (leachate equivalent)	mg/l	2.5	NONE	8.5	-	94	-	63

4041 MCERTS Analytical Report Number: 20-90870

Project / Site name: Nordic, Immingham Your Order No: 19112-I2

Lab Sample Number				1463234	1463235	1463236	1463237	1463238
Sample Reference				TP01	TP01	TP01	TP05	TP06
Sample Number				D1	D2	D3	D1	D1
Depth (m)				0.05-0.15	0.10-0.50	0.70	0.20-0.50	0.20-0.50
Date Sampled				25/02/2020	25/02/2020	25/02/2020	24/02/2020	24/02/2020
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0	< 2.0	< 2.0	3.9
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	< 8.0	< 8.0	< 8.0	27
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	< 8.0	< 8.0	< 8.0	120
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	< 10	< 10	< 10	150
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0	< 2.0	< 2.0	6.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	< 10	< 10	16	36
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	< 10	< 10	< 10	130
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	< 10	< 10	24	170

Project / Site name: Nordic, Immingham Your Order No: 19112-I2

								-
Lab Sample Number				1463239	1463240	1463241	1463242	1463243
Sample Reference				TP04 D1	TP07 D1	TP07	TP15 D1	TP16 D1
Sample Number Depth (m)				0.30-0.50	0.00-0.30	D2 0.30-0.50	0.70	0.20-0.50
Date Sampled				28/02/2020	25/02/2020	25/02/2020	26/02/2020	25/02/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
			Þ				Home Supplied	
		8	Accreditation Status					
Analytical Parameter	Units	Limit of detection	edi Stat					
(Soil Analysis)	C,	tion	us					
		-	on					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	19	7.6	9.3	15	13
Total mass of sample received	kg	0.001	NONE	0.37	0.41	0.40	0.44	0.41
	- û							
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics		1						
pH - Automated	pH Units	N/A	MCERTS	7.9	10.4	8.9	7.9	10.2
<u>Total Cyanide</u> Total Sulphate as SO₄	mg/kg %	1 0.005	MCERTS MCERTS	< 1	< 1	< 1 0.503	< 1	< 1 0.264
Water Soluble SO4 16hr extraction (2:1 Leachate	70	0.005	MCEK15	-	-	0.000	-	0.204
Equivalent)	g/l	0.00125	MCERTS	-	-	1.3	-	0.32
Water Soluble SO4 16hr extraction (2:1 Leachate	5,.							
Equivalent)	mg/l	1.25	MCERTS	-	-	1280	-	325
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	-	-	38	-	49
Total Sulphur	%	0.005	MCERTS	-	-	0.272	-	0.202
Ammonium as NH_4	mg/kg	0.5	MCERTS	-	-	12	-	< 0.5
Ammonium as NH4 (10:1 leachate equivalent) Organic Matter	mg/l	0.05	MCERTS	- 3.8	-	1.19 3.3	- 2.5	< 0.05 3.9
	%	0.1	MCERTS	3.8	0.6	3.3	2.5	3.9
Water Soluble Nitrate (2:1) as N (leachate equivalent)	mg/l	2	NONE	-	-	< 2.0	-	< 2.0
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs				1		1		1
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.21	0.45	3.3
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.79
Acenaphthene Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.26	<u>1.3</u> 2.1
Phenanthrene	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 0.46	0.33	17
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.73	6.9
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.90	4.1	20
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.85	3.5	20
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.55	2.0	19
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.42	1.4	14
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.42	1.3	18
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.31	0.93	5.5
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.40	1.2	14
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.17	0.53	6.0
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	1.8
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.66	6.6
Total DAH								
Total PAH	mg/kg	0.8	MCERTS	< 0.80	< 0.80	4.69	20.3	156
		0.0	PICEKIS	< 0.00	< U.OU	4.09	20.5	120
Speciated Total EPA-16 PAHs	iiig/kg							
• •	ing/kg							
Heavy Metals / Metalloids		1	MCERTS	16	< 1 0	9.1	14	13
Heavy Metals / Metalloids Arsenic (aqua regia extractable)	mg/kg	1 1	MCERTS MCERTS	<u>16</u> 100	< 1.0 190	9.1 170	<u>14</u> 140	13 170
Heavy Metals / Metalloids Arsenic (aqua regia extractable) Barium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	100	190	170	140	170
Heavy Metals / Metalloids Arsenic (aqua regia extractable)	mg/kg							
Heavy Metals / Metalloids Arsenic (aqua regia extractable) Barium (aqua regia extractable) Beryllium (aqua regia extractable)	mg/kg mg/kg mg/kg	1 0.06	MCERTS MCERTS	100 1.2	190 2.5	170 2.2	140 1.8	170 1.8
Heavy Metals / Metalloids Arsenic (aqua regia extractable) Barium (aqua regia extractable) Beryllium (aqua regia extractable) Boron (water soluble)	mg/kg mg/kg mg/kg mg/kg	1 0.06 0.2	MCERTS MCERTS MCERTS	100 1.2 6.4	190 2.5 2.5 < 0.2 < 4.0	170 2.2 3.9	140 1.8 2.1	170 1.8 1.6
Heavy Metals / Metalloids Arsenic (aqua regia extractable) Barium (aqua regia extractable) Beryllium (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.06 0.2 0.2	MCERTS MCERTS MCERTS MCERTS	100 1.2 6.4 < 0.2 < 4.0 35	190 2.5 2.5 < 0.2 < 4.0 77	170 2.2 3.9 < 0.2 < 4.0 68	140 1.8 2.1 0.4 < 4.0 29	170 1.8 1.6 0.2
Heavy Metals / Metalloids Arsenic (aqua regia extractable) Barium (aqua regia extractable) Beryllium (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable) Copper (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.06 0.2 0.2 4	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	100 1.2 6.4 < 0.2 < 4.0 35 22	190 2.5 2.5 < 0.2 < 4.0 77 13	170 2.2 3.9 < 0.2 < 4.0 68 31	140 1.8 2.1 0.4 < 4.0 29 37	170 1.8 1.6 0.2 < 4.0 150 51
Heavy Metals / Metalloids Arsenic (aqua regia extractable) Barium (aqua regia extractable) Beryllium (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.06 0.2 0.2 4 1 1 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	100 1.2 6.4 < 0.2 < 4.0 35 22 29	190 2.5 2.5 < 0.2 < 4.0 77 13 16	170 2.2 3.9 < 0.2 < 4.0 68 31 23	140 1.8 2.1 0.4 < 4.0 29 37 22	170 1.8 1.6 0.2 < 4.0 150 51 54
Heavy Metals / Metalloids Arsenic (aqua regia extractable) Barium (aqua regia extractable) Beryllium (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (aqua regia extractable) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.06 0.2 0.2 4 1 1 1 0.3	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	100 1.2 6.4 < 0.2 < 4.0 35 22 29 0.3	190 2.5 2.5 < 0.2 < 4.0 77 13 16 < 0.3	170 2.2 3.9 < 0.2 < 4.0 68 31 23 < 0.3	140 1.8 2.1 0.4 < 4.0 29 37 22 < 0.3	170 1.8 1.6 0.2 < 4.0 150 51 54 < 0.3
Heavy Metals / Metalloids Arsenic (aqua regia extractable) Barium (aqua regia extractable) Beryllium (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (aqua regia extractable) Chromium (aqua regia extractable) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.06 0.2 4 1 1 0.3 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	100 1.2 6.4 < 0.2 < 4.0 35 22 29 0.3 33	190 2.5 2.5 < 0.2 < 4.0 77 13 16 < 0.3 5.5	170 2.2 3.9 < 0.2 < 4.0 68 31 23 < 0.3 17	140 1.8 2.1 0.4 < 4.0 29 37 22 < 0.3 27	170 1.8 1.6 0.2 < 4.0 150 51 54 < 0.3 100 100 10
Heavy Metals / Metalloids Arsenic (aqua regia extractable) Barium (aqua regia extractable) Beryllium (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (aqua regia extractable) Chromium (aqua regia extractable) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable) Nickel (aqua regia extractable) Selenium (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	$ \begin{array}{r} 1\\ 0.06\\ 0.2\\ 4\\ 1\\ 1\\ 0.3\\ 1\\ 1\\ 1 \end{array} $	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	100 1.2 6.4 < 0.2 < 4.0 35 22 29 0.3 33 < 1.0	$ \begin{array}{r} 190 \\ 2.5 \\ 2.5 \\ < 0.2 \\ < 4.0 \\ 77 \\ 13 \\ 16 \\ < 0.3 \\ 5.5 \\ 5.4 \\ \end{array} $	170 2.2 3.9 < 0.2 < 4.0 68 31 23 < 0.3 17 3.8	140 1.8 2.1 0.4 < 4.0 29 37 22 < 0.3 27 3.2	$ \begin{array}{r} 170 \\ 1.8 \\ 1.6 \\ 0.2 \\ < 4.0 \\ 150 \\ 51 \\ 54 \\ < 0.3 \\ 100 \\ 4.2 \\ \end{array} $
Heavy Metals / Metalloids Arsenic (aqua regia extractable) Barium (aqua regia extractable) Beryllium (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.06 0.2 4 1 1 0.3 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	100 1.2 6.4 < 0.2 < 4.0 35 22 29 0.3 33	190 2.5 2.5 < 0.2 < 4.0 77 13 16 < 0.3 5.5	170 2.2 3.9 < 0.2 < 4.0 68 31 23 < 0.3 17	140 1.8 2.1 0.4 < 4.0 29 37 22 < 0.3 27	170 1.8 1.6 0.2 < 4.0 150 51 54 < 0.3 100 100 10

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

4041 MCERTS Analytical Report Number: 20-90870

Project / Site name: Nordic, Immingham Your Order No: 19112-I2

Lab Sample Number				1463239	1463240	1463241	1463242	1463243
Sample Reference				TP04	TP07	TP07	TP15	TP16
Sample Number	D1	D1	D2	D1	D1			
Depth (m)	0.30-0.50	0.00-0.30	0.30-0.50	0.70	0.20-0.50			
Date Sampled	28/02/2020	25/02/2020	25/02/2020	26/02/2020	25/02/2020			
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
					1			
Magnesium (water soluble)	mg/kg	5	NONE	-	-	37	-	7.2
Magnesium (leachate equivalent)	mg/l	2.5	NONE	-	-	18	-	3.6

4041 MCERTS Analytical Report Number: 20-90870

Project / Site name: Nordic, Immingham Your Order No: 19112-I2

Lab Sample Number				1463239	1463240	1463241	1463242	1463243
Sample Reference				TP04	TP07	TP07	TP15	TP16
Sample Number				D1	D1	D2	D1	D1
Depth (m)	0.30-0.50	0.00-0.30	0.30-0.50	0.70	0.20-0.50			
Date Sampled	28/02/2020	25/02/2020	25/02/2020	26/02/2020	25/02/2020			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	4.7	< 2.0	< 2.0	3.8	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	18	< 10	< 10	15	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	10	< 10	< 10	26	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	33	< 10	< 10	45	-

Project / Site name: Nordic, Immingham Your Order No: 19112-I2

Lab Sample Number				1463244	1463245	1463246	1463247	1463915
Sample Reference				TP16	TP19	TP24	TP24	TP13
Sample Number				D2	D1	D1	D2	D1
Depth (m)				0.50-1.00	0.40	0.40-0.70	0.70-0.90	0.50-0.80
Date Sampled				25/02/2020	27/02/2020	27/02/2020	27/02/2020	26/02/2020
Time Taken		1		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	15	14	14	18	14
Total mass of sample received	kg	0.001	NONE	0.43	0.46	0.46	0.43	2.0
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	10.1	9.5	9.0	7.9	8.0
Total Cvanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO ₄	//////////////////////////////////////	0.005	MCERTS	-	-	0.384	0.075	0.172
Water Soluble SO4 16hr extraction (2:1 Leachate	1							
Equivalent)	g/l	0.00125	MCERTS	-	-	1.2	0.098	0.27
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	_	_	1170	98.0	271
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	-	-	1200	470	96
Total Sulphur	%	0.005	MCERTS	-	_	0.323	0.095	0.170
Ammonium as NH ₄	mg/kg	0.5	MCERTS	-	-	30	32	< 0.5
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	-	-	3.03	3.23	< 0.05
Organic Matter	%	0.1	MCERTS	-	7.0	-	2.1	2.7
Water Soluble Nitrate (2:1) as N (leachate equivalent)	mg/l	2	NONE	-	-	< 2.0	< 2.0	< 2.0
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	mg/kg	1	MUERIS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	0.74	0.76	29	< 0.05	0.72
Acenaphthylene	mg/kg	0.05	MCERTS	0.30	0.20	8.9	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	0.27	0.32	26	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	0.46	0.39	39	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	5.0	3.1	230	< 0.05	1.1
Anthracene	mg/kg	0.05	MCERTS	1.6	0.76	63	< 0.05	0.21
Fluoranthene	mg/kg	0.05	MCERTS	11 10	5.1 4.7	380 340	< 0.05	1.1
Pyrene Benzo(a)anthracene	mg/kg mg/kg	0.05	MCERTS MCERTS	6.8	2.9	190	< 0.05 < 0.05	1.1 0.83
Chrysene	mg/kg	0.05	MCERTS	5.2	2.9	160	< 0.05	0.68
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	6.0	3.5	150	< 0.05	0.79
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	2.8	0.81	96	< 0.05	0.27
Benzo(a)pyrene	mg/kg	0.05	MCERTS	5.1	2.1	150	< 0.05	0.43
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	2.3	1.2	76	< 0.05	0.25
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.73	0.50	22	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	2.5	1.4	85	< 0.05	0.28
T-1-1 D411								
Total PAH	P	0.0	MORDER	<u> </u>	20.2	20.40	- 0.00	7.0
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	60.9	30.3	2040	< 0.80	7.69
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	10	14	16	9.4	17
Barium (aqua regia extractable)	mg/kg	1	MCERTS	150	230	240	100	110
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.5	1.8	3.4	1.2	1.1
Boron (water soluble)	mg/kg	0.2	MCERTS	2.0	9.6	4.0	13	1.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.6	0.3	0.3	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	93	100	120	36	28
Copper (aqua regia extractable)	mg/kg	1	MCERTS	74	69	93	21	37
Lead (aqua regia extractable)	mg/kg	1	MCERTS	40	47	76	19	22
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3 35	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable) Selenium (aqua regia extractable)	mg/kg mg/kg	1 1	MCERTS MCERTS	26 4.0	5.2	68 5.7	39 4.1	30 < 1.0
Vanadium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	77	51	71	36	37
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	160	200	270	74	66

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

4041 MCERTS Analytical Report Number: 20-90870

Project / Site name: Nordic, Immingham Your Order No: 19112-I2

Lab Sample Number				1463244	1463245	1463246	1463247	1463915
Sample Reference				TP16	TP19	TP24	TP24	TP13
Sample Number	D2	D1	D1	D2	D1			
Depth (m)	0.50-1.00	0.40	0.40-0.70	0.70-0.90	0.50-0.80			
Date Sampled	25/02/2020	27/02/2020	27/02/2020	27/02/2020	26/02/2020			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Manua atom (orakan adabla)		-				21	60	24
Magnesium (water soluble)	mg/kg	5	NONE	-	-	21	68	24
Magnesium (leachate equivalent)	mg/l	2.5	NONE	-	-	21	34	8.5

4041 MCERTS Analytical Report Number: 20-90870

Project / Site name: Nordic, Immingham Your Order No: 19112-I2

Lab Sample Number				1463244	1463245	1463246	1463247	1463915
Sample Reference				TP16	TP19	TP24	TP24	TP13
Sample Number				D2	D1	D1	D2	D1
Depth (m)	0.50-1.00	0.40	0.40-0.70	0.70-0.90	0.50-0.80			
Date Sampled	25/02/2020	27/02/2020	27/02/2020	27/02/2020	26/02/2020			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	µg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	-	-	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	2.2	-	-	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	5.2	-	-	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	18	-	-	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	83	-	-	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	110	-	-	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	3.7	-	-	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	12	-	-	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	58	-	-	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	120	-	-	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	200	-	-	< 10	< 10

Project / Site name: Nordic, Immingham

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1463234	TP01	D1	0.05-0.15	Grey loam with gravel and vegetation.
1463235	TP01	D2	0.10-0.50	Brown clay with vegetation.
1463236	TP01	D3	0.70	Brown clay with gravel.
1463237	TP05	D1	0.20-0.50	Grey sandy clay with gravel and vegetation.
1463238	TP06	D1	0.20-0.50	Grey sand with gravel.
1463239	TP04	D1	0.30-0.50	Grey sandy clay.
1463240	TP07	D1	0.00-0.30	Grey sand with gravel.
1463241	TP07	D2	0.30-0.50	Grey sand with gravel.
1463242	TP15	D1	0.70	Grey clay with gravel.
1463243	TP16	D1	0.20-0.50	Brown clay and sand with gravel.
1463244	TP16	D2	0.50-1.00	Brown clay and sand with gravel.
1463245	TP19	D1	0.40	Brown clay and sand with gravel.
1463246	TP24	D1	0.40-0.70	Brown clay and sand with gravel.
1463247	TP24	D2	0.70-0.90	Brown clay and sand with gravel.
1463915	TP13	D1	0.50-0.80	Brown clay and sand with vegetation and gravel

Project / Site name: Nordic, Immingham

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In house method.	L082-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-PL	D	NONE
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS

Iss No 20-90870-1 Nordic, Immingham 19112

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Nordic, Immingham

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
Water Soluble Nitrate (2:1) as N in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Jay Fox G D Pickles Ltd Biltons Farm South Scarle Lane Swinderby Lincoln LN6 9JA

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e:

e:@gdpickles.co.uk

Analytical Report Number : 20-90875

Project / Site name:	Nordic, Immingham	Samples received on:	02/03/2020
Your job number:	19112	Samples instructed on:	05/03/2020
Your order number:	19112-I2	Analysis completed by:	17/03/2020
Report Issue Number:	1	Report issued on:	17/03/2020
Samples Analysed:	5 10:1 WAC samples		

Zina Abdul Razzak Senior Quality Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :	waters	 4 weeks from reporting 2 weeks from reporting 2 weeks from reporting 6 months from reporting
Excel copies of reports are only valid when accompanied by this PDF certificate.		

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		20-	90875					
					Client:	GDPICKLES		
					Cheffet.	GDFICKLES		
Location		Nordic, 1	Immingham					
Lab Reference (Sample Number)		1463266	5 / 1463267	Landfill	Waste Acceptan	ce Criteria		
Sampling Date)2/2020			Limits Stable Non-		
Sampling Date Sample ID			L WAC 3		-	reactive		
Depth (m)			0-0.50		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis								
TOC (%)**	1.8				3%	5%	6%	
Loss on Ignition (%) **	5.3						10%	
BTEX (µg/kg) **	< 10				6000			
Sum of PCBs (mg/kg) **	< 0.007				1			
Mineral Oil (mg/kg)	< 10				500			
Total PAH (WAC-17) (mg/kg)	84				100			
pH (units)**	7.5					>6		
Acid Neutralisation Capacity (mol / kg)	9.1					To be evaluated	To be evaluate	
Eluate Analysis	10:1			10:1	Limit values for compliance leaching			
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
Arsenic *	< 0.0011			< 0.0110	0.5	2	25	
Barium *	0.0347			0.288	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	0.0006			0.0052	0.5	10	70	
Copper *	0.0068			0.057	2	50	100	
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2	
Molybdenum *	0.0071			0.0590	0.5	10	30	
Nickel *	< 0.0003			< 0.0030	0.4	10	40	
Lead *	0.0071			0.059	0.5	10	50	
Antimony *	< 0.0017			< 0.017	0.06	0.7	5	
Selenium *	< 0.0040			< 0.040	0.1	0.5	7	
Zinc *	0.0046			0.038	4	50	200	
Chloride *	24			200	800	15000	25000	
Fluoride	5.6			47	10	150	500	
Sulphate *	190			1600	1000	20000	50000	
TDS*	340			2800	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	8.28			68.7	500	800	1000	
Leach Test Information								
Stone Content (%)	< 0.1						1	
Sample Mass (kg)	2.0							
Dry Matter (%)	77							
Moisture (%)	23							
						ļ		
Results are expressed on a dry weight basis, after correction for mois	sture content where	annlicable		1	*= LIKAS accredit	ed (liquid eluate ana	lysis only)	
Acourd are expressed on a dry weight basis, diter correction for mole	scare concern where	- applicable.			- unno acciediti	ca viidnin eingre gug	iyala uniy)	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		20	-90875					
					Client:	GDPICKLES		
					Cheffe.	GDFICKLLS		
Location		Nordic,	Immingham					
Lab Reference (Sample Number)		146326	8 / 1463269		Landfill	Waste Acceptan	ce Criteria	
Sampling Date			02/2020			Limits Stable Non-		
Sampling Date Sample ID					1	reactive		
Depth (m)	TP05 WAC 1 0.30-1.00				Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis								
TOC (%)**	2.0				3%	5%	6%	
Loss on Ignition (%) **	5.4		_				10%	
BTEX (µg/kg) **	< 10				6000			
Sum of PCBs (mg/kg) **	< 0.007				1			
Mineral Oil (mg/kg)	120				500			
Total PAH (WAC-17) (mg/kg)	59				100			
pH (units)**	7.5					>6		
Acid Neutralisation Capacity (mol / kg)	3.0					To be evaluated	To be evaluated	
Eluate Analysis	10:1			10:1	Limit values for compliance leaching			
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
Arsenic *	0.0286			0.237	0.5	2	25	
Barium *	0.0358			0.298	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	< 0.0004			< 0.0040	0.5	10	70	
Copper *	0.0024			0.020	2	50	100	
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2	
Molybdenum *	0.0127			0.106	0.5	10	30	
Nickel *	0.0008			0.0064	0.4	10	40	
Lead *	0.0068			0.057	0.5	10	50	
Antimony *	< 0.0017			< 0.017	0.06	0.7	5	
Selenium *	< 0.0040			< 0.040	0.1	0.5	7	
Zinc *	0.012		-	0.10	4	50	200	
Chloride *	4.5			37	800	4000	25000	
Fluoride	7.6			63	10	150	500	
Sulphate *	1400			12000	1000	20000	50000	
TDS*	1300			11000	4000	60000	100000	
Phenol Index (Monhydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	5.19			43.2	500	800	1000	
Leach Test Information								
Stone Content (%)	< 0.1	1	1					
Sample Mass (kg)	2.0	1			1	1		
Dry Matter (%)	82	1			1	1		
Moisture (%)	18				1	1		
Results are expressed on a dry weight basis, after correction for moi	sture content when	e annlicable			*= IIKAC accordit	ed (liquid eluate ana	lysis only)	
According and expression on a dry weight basis, after correction for more	scare concent when	c applicable.			- oros acciedit	a vigura ciuate di la	.,	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		20-	·90875					
					Client:	GDPICKLES		
					chefic.	GDFICKLES		
Location		Nordic,	Immingham					
Lab Reference (Sample Number)		146227	0 / 1 / 2 2 2 1		Landfill	Waste Acceptance	e Criteria	
			0 / 1463271		Limits			
Sampling Date			02/2020			Stable Non- reactive		
Sample ID Depth (m)	0.20-1.00				Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis								
TOC (%)**	1.8				3%	5%	6%	
Loss on Ignition (%) **	3.9						10%	
BTEX (μg/kg) **	< 10				6000			
Sum of PCBs (mg/kg) **	< 0.007				1			
Mineral Oil (mg/kg)	170				500			
Total PAH (WAC-17) (mg/kg)	41				100			
pH (units)**	7.4					>6		
Acid Neutralisation Capacity (mol / kg)	4.9					To be evaluated	To be evaluate	
Eluate Analysis	10:1			10:1	Limit valu	es for compliance le	eaching test	
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
Arsenic *	0.0434			0.363	0.5	2	25	
Barium *	0.0458			0.384	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	0.0009			0.0074	0.5	10	70	
Copper *	0.0052			0.044	2	50	100	
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2	
Molybdenum *	0.0169			0.141	0.5	10	30	
Nickel *	0.0006			0.0050	0.4	10	40	
Lead *	< 0.0010			< 0.010	0.5	10	50	
Antimony *	0.012			0.10	0.06	0.7	5	
Selenium *	< 0.0040			< 0.040	0.1	0.5	7	
Zinc *	0.0062			0.052	4	50	200	
Chloride *	4.0			33	800	4000	25000	
Fluoride	4.4			37	10	150	500	
Sulphate *	1000			8600	1000	20000	50000	
TDS*	910		1	7600	4000	60000	100000	
Phenol Index (Monhydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	7.37			61.7	500	800	1000	
Leach Test Information		<u> </u>	+					
				1				
Stone Content (%)	< 0.1							
Sample Mass (kg)	2.0							
Dry Matter (%)	82							
Moisture (%)	18							
Results are expressed on a dry weight basis, after correction for mois	ture content where	e applicable.	_L	1	*= UKAS accredit	ed (liquid eluate ana	lysis only)	
	for any discrepenc				** = MCERTS accr		/	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		20-	90875					
					Cliente			
					Client:	GDPICKLES		
Location		Nordic,	Immingham		-			
Lab Reference (Sample Number)				Landfill	Waste Acceptane	e Criteria		
			2 / 1463273			Limits		
Sampling Date			02/2020		-	Stable Non- reactive		
Sample ID Depth (m)	TP13 WAC 4 0.50-0.80				Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis								
TOC (%)**	1.7				3%	5%	6%	
Loss on Ignition (%) **	6.3						10%	
BTEX (µg/kg) **	< 10				6000			
Sum of PCBs (mg/kg) **	< 0.007				1			
Mineral Oil (mg/kg)	< 10				500			
Total PAH (WAC-17) (mg/kg)	9.4				100			
pH (units)**	8.1					>6		
Acid Neutralisation Capacity (mol / kg)	7.3					To be evaluated	To be evaluated	
Eluate Analysis	10:1			10:1	Limit values for compliance leaching			
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
Arsenic *	< 0.0011			< 0.0110	0.5	2	25	
Barium *	0.0259			0.218	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	< 0.0004			< 0.0040	0.5	10	70	
Copper *	0.0035			0.030	2	50	100	
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2	
Molybdenum *	0.0020			0.0165	0.5	10	30	
Nickel *	< 0.0003			< 0.0030	0.4	10	40	
Lead *	0.0080			0.068	0.5	10	50	
Antimony *	< 0.0017			< 0.017	0.06	0.7	5	
Selenium *	< 0.0040			< 0.040	0.1	0.5	7	
Zinc *	0.0057			0.048	4	50	200	
Chloride *	20			160	800	4000	25000	
Fluoride	3.0			25	10	150	500	
Sulphate *	180			1500	1000	20000	50000	
TDS*	310			2600	4000	60000	100000	
Phenol Index (Monhydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	7.97			67.1	500	800	1000	
Leach Test Information								
Stone Content (%)	< 0.1							
Sample Mass (kg)	2.0	1	1	1	Į	Į		
Dry Matter (%)	86							
Moisture (%)	14							
Results are expressed on a dry weight basis, after correction for moi	sture content when	e applicable.			*= UKAS accredit	ed (liquid eluate ana	lysis only)	
	for any discrepend						/	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		20-	90875					
					Client:	GDPICKLES		
						ODI IGNEED		
Location		Nordic, 1	Immingham					
Lab Reference (Sample Number)		1463274	4 / 1463275		Landfill	Waste Acceptane Limits	e Criteria	
Sampling Date		27/0	02/2020			Stable Non-		
Sample ID			4 WAC 5			reactive		
Depth (m)		0.3	0-0.60		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis								
TOC (%)**	3.7				3%	5%	6%	
Loss on Ignition (%) **	8.3						10%	
BTEX (μg/kg) **	< 10				6000			
Sum of PCBs (mg/kg) **	< 0.007				1			
Mineral Oil (mg/kg)	320				500			
Total PAH (WAC-17) (mg/kg)	240				100			
pH (units)**	8.3					>6		
Acid Neutralisation Capacity (mol / kg)	20					To be evaluated	To be evaluated	
Eluate Analysis	10:1			10:1	Limit values for compliance leaching t			
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
Arsenic *	0.0275			0.239	0.5	2	25	
Barium *	0.0190			0.165	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	0.0010			0.0084	0.5	10	70	
Copper *	0.018			0.15	2	50	100	
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2	
Molybdenum *	0.0674			0.584	0.5	10	30	
Nickel *	0.0092			0.080	0.4	10	40	
Lead *	0.0041			0.036	0.5	10	50	
Antimony *	0.017			0.15	0.06	0.7	5	
Selenium *	< 0.0040			< 0.040	0.1	0.5	7	
Zinc *	0.019			0.17	4	50	200	
Chloride *	130			1100	800	4000	25000	
Fluoride	1.3			12	10	150	500	
Sulphate *	180			1600	1000	20000	50000	
TDS*	430			3800	4000	60000	100000	
Phenol Index (Monhydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	16.2			140	500	800	1000	
Leach Test Information		1	1			1	1	
Stone Content (%)	< 0.1							
Sample Mass (kg)	2.0							
Dry Matter (%)	82							
Moisture (%)	18							
			-					
Results are expressed on a dry weight basis, after correction for mois	ture content when	e applicable			*= IIKAC accordit	ed (liquid eluate ana	lysis only)	
Acousts are expressed on a dry weight basis, after correction for mole	sure content when	e applicable.			- UNAS accredit	eu (ilquiu eluate ana	iyaia Uliiy)	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

Project / Site name: Nordic, Immingham

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1463266	TP01	WAC 3	0.10-0.50	Brown clay and sand with vegetation and gravel
1463268	TP05	WAC 1	0.30-1.00	Brown clay and sand with vegetation and gravel
1463270	TP06	WAC 2	0.20-1.00	Brown clay and sand with gravel.
1463272	TP13	WAC 4	0.50-0.80	Brown clay and sand with vegetation and gravel
1463274	TP24	WAC 5	0.30-0.60	Brown clay and sand with gravel.

Project / Site name: Nordic, Immingham

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance""	L046-PL	W	NONE	
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	w	NONE	
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS	
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	w	ISO 17025	
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	w	NONE	
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	w	ISO 17025	
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS	
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	w	ISO 17025	
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE	
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE	
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	w	ISO 17025	
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS	
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	W	MCERTS	
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE	
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE	
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025	
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	w	ISO 17025	

Iss No 20-90875-1 Nordic, Immingham 19112

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Nordic, Immingham

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
TP01	WAC 3	S	20-90875	1463266	b	BTEX in soil (Monoaromatics)	L073B-PL	b
TP01	WAC 3	S	20-90875	1463266	b	Total BTEX in soil (Poland)	L073-PL	b
TP05	WAC 1	S	20-90875	1463268	b	BTEX in soil (Monoaromatics)	L073B-PL	b
TP05	WAC 1	S	20-90875	1463268	b	Total BTEX in soil (Poland)	L073-PL	b
TP06	WAC 2	S	20-90875	1463270	b	BTEX in soil (Monoaromatics)	L073B-PL	b
TP06	WAC 2	S	20-90875	1463270	b	Total BTEX in soil (Poland)	L073-PL	b
TP13	WAC 4	S	20-90875	1463272	b	BTEX in soil (Monoaromatics)	L073B-PL	b
TP13	WAC 4	S	20-90875	1463272	b	Total BTEX in soil (Poland)	L073-PL	b
TP24	WAC 5	S	20-90875	1463274	b	BTEX in soil (Monoaromatics)	L073B-PL	b
TP24	WAC 5	S	20-90875	1463274	b	Total BTEX in soil (Poland)	L073-PL	b

Appendix 5 CBR Test Certificates

GD Pickles Ltd. Geoenvironmental Investigation Report Nordic Concept Stage Report Reference 19112.01 April 2020

		FEQUIVALENT CBR Value deriv			7 Woods Croxley 0 Watford	i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS	
Client: Client Address:	G D Pickles L Biltons Farm South Scarle Swinderby, Li LN6 9JA	Lane		Client Refe Job Numbe Date Teste Tested By:	er: d:	19112 20-88559_1 25.02.20 NS	
Contact: Site:	Jay Fox Nordic, Immir	ngham					
Test Results Laboratory Refe Fest Reference Material Descrip Fest Location:	: ption:	PL 1 1 Brown CLAY TP 7 CBR 7		Depth Top Layer Thic Weather C Kentledge Plate Diam	kness (mm): onditions: Type:	550 N/A Dry/Overcast 9.6 T Digger 0.45	
		Applied Load	Applied P		age Plate	7	
		[kN] 0.39	[kN/r 2		nent [mm] 0.00	-1	
		6.40	40		0.00	-1	
		9.50	60		0.52	-1	
		12.90	81		0.81	-1	
		15.60	98		1.04		
		18.60	11		1.27		
		23.40	14		1.61	4	
		0.39	2 End of		0.12		
		lacement Graph		Арр	lied Pressu	re vs Settlement	
		me Elapsed (min)			Applied Pr	essure [kN/m²]	
0 0.00 -0.20 -0.40 -0.60 -0.60 -1.00 -1.00 -1.20 -1.40 -1.60 -1.80	5		20 ⊣	Where age 0.00 0.20 0.20 0.40 0.40 0.60 0.80 0.80 0.80 1.00 1.40 1.40 1.40 1.40 1.40 1.40 1.40	50		
Pressure at 1.2	25mm Settlerr	nent:	116 kN/m ²				
Modulus of Su	bgrade React	tion:	58 MN/m²/m	I			
Equivalent CBI	R By Plate Lo	ading:	11 %				
Moisture Conte	ent:		23 %				

Date Reported: 02/03/2020

Page: 1 of 1

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. All assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request. The analysis was carried out at site mentioned above. Moisture Content was carried out at i2 Analytical Limited, Unit 8, 8 Harrowden Road, Brackmills Industrial Estate, Northampton, NN4 7EB

		TEST CEI of Equivalent CBR Value derive coordance with In House Procedu		earing test B		Croxley Gr	al Ltd ots Meadow een Business Park erts WD18 8YS	Environmental Science
4041 Client: Client Address	G D Pickles Biltons Farm South Scarle	1			Client Referen Job Number:	nce:	19112 20-88559_2	
Contact: Site:	Swinderby, I LN6 9JA Jay Fox Nordic, Imm				Date Tested: Tested By:		25.02.20 NS	
Test Results Laboratory Ref Test Reference Material Descri Test Location:	ə:	PL 2 2 Crushed Grey Stone TP 6 CBR 6			Depth Top (m Layer Thickne Weather Con Kentledge Ty Plate Diamete	ess (mm): ditions: pe:	Ground Level N/A Dry/Overcast 9.5 T Digger 0.30	
		Applied Load [kN] 0.24 16.95 22.45 31.25 37.75 41.35 44.25	Applied I [kN/ 31 24 31 44 53 58 58 62 End of	(m ²] 3 40 8 8 42 34 35 26	Average Settleme 0.0 0.3 0.4 0.7 1.0 1.2 1.3	nt [mm] 00 03 13 18 14 14 14 14 12 22		
0 0.00 -0.20 -0.40 -0.60 -0.80 -1.00 -1.20 -1.40 -1.60	Total 7		20 ⊣	Average Cumulative Plate Settlement [mm]	Applie		e vs Settlement ssure [kN/m²] 400 600	800
Pressure at 1. Modulus of Su Equivalent CE Moisture Cont Remarks:	ubgrade Rea BR By Plate L	ction:	593 kN/m² 210 MN/m² >100% N/A	/m				
				Signed: Darren Be Geotechni	rrill cal Director			

Date Reported: 02/03/2020

Page: 1 of 1

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. All assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request. The analysis was carried out at site mentioned above. Moisture Content was carried out at i2 Analytical Limited, Unit 8, 8 Harrowden Road, Brackmills Industrial Estate, Northampton, NN4 7EB"

		TEST CER of Equivalent CBR Value derive coordance with In House Procedur	d from Plate Be			Croxley Gr	al Ltd ots Meadow een Business Park erts WD18 8YS	Environmental Science
4041 Client: Client Address	G D Pickles Biltons Farm South Scarle Swinderby, I	e Lane			Client Referen Job Number: Date Tested:	nce:	19112 20-88559_3 25.02.20	
Contact: Site:	LN6 9JA Jay Fox Nordic, Imm				Tested By:		NS	
Test ResultsLaboratory Reference:PL 3Fest Reference:3Material Description:Crushed Grey StoneFest Location:N/A Note by GDP:			This is TP	1	Depth Top (m Layer Thickne Weather Cond Kentledge Typ Plate Diamete	ss (mm): ditions: be:	Ground Level N/A Dry/Overcast 9.5 T Digger 0.45	
		Applied Load	Applied I		Average		1	
		[kN]	[kN/		Settlemer		4	
		0.24	2		0.0		4	
		7.10	4		0.2			
		10.00	6		0.6			
		12.20	7		0.7			
		15.50	9	-	0.9			
		17.80	11		1.2		4	
		19.00	11		1.4		4	
		0.24	2		1.0	1	1	
			End of	Test				
		placement Graph			Applied	d Pressure	vs Settlement	
0	5		5	_		Applied Pres	sure [kN/m²]	
0.00	· · · · · · ·			Average Cumulative Plate Settlement [mm]	0.00	50	100	150
	~			nen	0.20			
Total Displacement Total Displacement Displacement Total Displacement Total Displacement				ttler	0.40			
눈 -0.60	<u> </u>			Š				
ē -0.80		7		late	0.60			
plao				e e	0.80			
ස් -1.00				ativ	1.00			
<u>ष</u> ्ठ -1.20				T T				
-1.40		\sim /		Cul	1.20		<u> </u>	
-				age	1.40			
-1.60 [±]				ver	1.60		•	
				A				
Pressure at 1.			112 kN/m ²					
Modulus of Si Equivalent CE	-		56 MN/m²/r 10 %	n				
-	-	oauny.						
Moisture Cont	tent:		N/A					
Remarks:				Signed:				
				oignoù.				
				Darren Be				

Geotechnical Director

for and on behalf of i2 Analytical Ltd

Date Reported: 02/03/2020

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. All assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request. The analysis was carried out at site mentioned above. Moisture Content was carried out at i2 Analytical Limited, Unit 8, 8 Harrowden Road, Brackmills Industrial Estate, Northampton, NN4 7EB

<text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text>			TEST CER	d from Plate Bearin		Croxley Gr	ots Meadow reen Business Park erts WD18 8YS	invironmental Science
LN6 BUA Contact: Jay Fox Jay Fox Set Normalian Educatory Reference: PL 1 East Reference: 1 Autoratory Reference: PL 1 East Reference: 1 Material Description: Brown Sandy Gravel Test Location: TP 15 CBR 15 $\frac{Applied Load}{1200} \frac{Applied Pressure Kentledge Type: 9.5 Digger Plate Diameter [m]: 0.45 \frac{Applied Load}{1200} \frac{Applied Pressure average Plate}{1200} \frac{1000}{1200} 100$	Client:	Biltons Farn South Scarl	n e Lane		Job Number:		20-88844_1	
Test Results abordary Reference: PL 1 Test Reference: Depth Top (mm): Ground Level Layer Thickness (mm): NA Weather Conditions:: Dy/Overcast Brown Sandy Gravel Test Location: TP 15 CBR 15 Depth Top (mm): Ground Level Layer Thickness (mm): NA Weather Conditions:: Dy/Overcast Brown Sandy Gravel Total Time Location: The CBR 15 Dy/Overcast Kentledge Type: 9.5 Digger Plate Diameter [m]: 0.45 The CBR 15 Average Plate Settlement [mm] O.45 Time / Displacement Graph Total Time Elapsed (mm) 0.00	Contact:	LN6 9JA	Lincoln					
Laboratory Reference: PL 1 Depth Top (mm): Grand Level Test Reference: 1 Layer Thickness (mm): NA Waterial Description: Brown Sandy Gravel Layer Thickness (mm): Dry/Overcast Test Location: TP 15 CBR 15 Kentledge Type: 9.5 Digger Plate Diameter (m): 0.45 Mathematical Description: Settlement (mm): 0.45 Mathematical Description: TP 15 CBR 15 NA Weither Conditions: 9.5 Digger Plate Diameter (m): 0.45 Mathematical Description: Settlement (mm): 11.00 69 0.27 22.60 142 0.52 0.39 2 0.61 0.39 2 0.61 0.40 0.00 300 0.40 0.00 0.00 0.40 0.40 0.00 0.40 10 10 10 0.40 10 10 10 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	Site:	Nordic, Imm	ingham					
Image: Normal State Sta	Test Referenc	e: ription:	1 Brown Sandy Gravel		Layer Thickn Weather Cor Kentledge Ty	ess (mm): nditions: /pe:	N/A Dry/Overcast 9.5 Digger	
11.00 69 0.27 22.60 142 0.52 35.00 220 0.77 48.00 302 1.01 53.00 233 1.25 0.39 2 0.61 End of Test			[kN]	[kN/m²]	Settleme	ent [mm]]	
22.60 142 0.52 35.00 220 0.77 48.00 302 1.01 53.00 333 1.25 0.39 2 0.61 End of Test							-	
35.00 220 0.77 48.00 302 1.01 53.00 333 1.25 0.39 2 0.61 End of Test							-	
53.00 333 1.25 0.39 2 0.61 End of Test								
O.39 2 0.61 End of Test Applied Pressure vs Settlement Output Output Output 0.00 0 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 <			48.00					
End of Test Applied Pressure vs Settlement Time / Displacement Graph Total Time Elapsed (min) 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Time / Displacement Graph Total Time Elapsed (min) Applied Pressure vs Settlement 0000/000/000/000/000/000/000/000/000/0			0.39	_		61	-	
Applied Pressure [kN/m ²]		Time / Dis	splacement Graph			ed Pressure	e vs Settlement	
Modulus of Subgrade Reaction:159 MN/m²/mEquivalent CBR By Plate Loading:63 %Moisture Content:15 %Remarks:15 %	0.00 -0.20 (mu) -0.40 tu -0.60 -0.80 -0.80 -1.00 -1.20 -1.40	5			Average Cumulative Plate Settlement [mm] 0.20 0.40 0.60 0.80 1.00 1.20 1.40			400
Equivalent CBR By Plate Loading: 63 % Moisture Content: 15 % Remarks:		Pressure at 1.25mm Settlement: 319 kN/r						
Moisture Content: 15 % Remarks:	0							
Remarks:	-	-	.oading:					
		itent:		15 %				
				Sigr	ed:			

Date Reported: 02/03/2020

Page: 1 of 1

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. All assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request. The analysis was carried out at site mentioned above. Moisture Content was carried out at i2 Analytical Limited, Unit 8, 8 Harrowden Road, Brackmills Industrial Estate, Northampton, NN4 7EB"

		TEST CE of Equivalent CBR Value deriv ccordance with In House Procedu			Wallord He		rvironmental Sc
Client: Client Address:	G D Pickles Biltons Farm South Scarle Swinderby, L LN6 9JA	e Lane		Client Referer Job Number: Date Tested: Tested By:	ice:	19112 20-88844_2 26.02.20 NS	
Contact: Site:	Jay Fox Nordic, Immi	ingham					
Test Results aboratory Refe Test Reference Material Descri Test Location:	2	PL 2 2 Dark Grey CLAY TP 13 CBR 13		Depth Top (m Layer Thickne Weather Cond Kentledge Typ Plate Diamete	ss (mm): litions: be:	400 N/A Dry/Overcast 9.5 Digger 0.45	
		Applied Load	Applied Pr	essure Average	Plate	1	
		[kN]	[kN/m	•			
		0.39	2	0.0]	
		2.40	15	0.2	_	4	
		3.60	23	0.5		4	
		4.60	29	0.7		4	
		5.40 6.20	34 39	1.1		4	
		7.00	39	1.3		4	
		0.39	2	0.9		1	
			End of	lest			
		placement Graph Fime Elapsed (min)				vs Settlement	
0 0.00 -0.20 -0.40 -0.60 -0.80 -1.00 -1.20 -1.40 -1.60 -1.80	5	10 15	20 ⊣			30 40	50
Pressure at 1.2	25mm Settler	ment:	37 kN/m ²	٩			
Nodulus of Su	Ibgrade Read	ction:	19 MN/m²/m				
Equivalent CB	R By Plate L	oading:	1.5 %				
-	-		21 %				
Moisture Cont Remarks:							

Date Reported: 02/03/2020

Page: 1 of 1

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. All assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request. The analysis was carried out at site mentioned above. Moisture Content was carried out at i2 Analytical Limited, Unit 8, 8 Harrowden Road, Brackmills Industrial Estate, Northampton, NN4 7EB

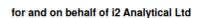
		TEST CER	d from Plate Bear		7 Woo Croxle BS1377-9 Watto		llytical Ltd odshots Meadow ay Green Business Park rd Herts WD18 8YS		vironmental Science
Client: Client Address:	G D Pickles Biltons Farn South Scarl Swinderby, LN6 9JA	n e Lane			Client Referen Job Number: Date Tested: Tested By:	ce:	19112 20-8884 26.02.20 NS	_	
Contact:	Jay Fox								
Site:	Nordic, Imm	hingham							
Test Results Laboratory Refe Fest Reference Material Descri Fest Location:):	PL 3 3 Brown Sandy Gravel TP 03 CBR 3			Depth Top (m Layer Thickne Weather Conc Kentledge Typ Plate Diamete	ss (mm): litions: be:	N/A Dry/0	ind Level Overcast Digger	
		Applied Load	Applied Pr		Average		1		
		[kN] 0.39	[kN/m 2	2 ²	Settlemer 0.0		4		
		12.60	79		0.0		-		
		20.00	126		0.5				
		29.00	182		0.7				
		32.00	201		0.9		4		
		41.00 46.20	258 290		1.2		-		
		0.39	230		0.6		-		
			End of 1	Fest		~			
	Total	splacement Graph Time Elapsed (min)					e vs Settle ssure [kN/m²		
0 0.00 -0.20 -0.40 -0.60 -0.80 -1.00 -1.20 -1.20 -1.40	5		0	Average Cumulative Plate Settlement [mm]	0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40		200	300	400
Pressure at 1.	25mm Settle	ment:	257 kN/m ²						
Modulus of Su	ıbgrade Rea	ction:	128 MN/m²/m	ı					
Equivalent CB	R By Plate I	₋oading:	43 %						
Moisture Cont Remarks:	ent:		13 %						

Date Reported: 02/03/2020

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. All assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request. The analysis was carried out at site mentioned above. Moisture Content was carried out at i2 Analytical Limited, Unit 8, 8 Harrowden Road, Brackmills Industrial Estate, Northampton, NN4 7EB

		of Equivalent CBR Value derive cordance with In House Procedu			Wallord Heris WD18815		
4041 Client: Client Address:	G D Pickles Biltons Farm South Scarle Swinderby, L LN6 9JA	Lane		Client Re Job Num Date Tes Tested E	sted:	19112 20-89121_1 27.02.20 NS	
Contact: Site:	Jay Fox Nordic, Immi	ngham			-		
<u>Test Results</u> _aboratory Refe Test Reference Material Descrip Test Location:	c .	PL 1 1 Sandy Dark CLAY TP 24 CBR 24		Weather Kentledg	ickness (mm): Conditions:	Ground Level N/A Dry/Overcast 9.5 Digger 0.45	
		Applied Load [kN] 0.39 3.30 4.80 9.00	Applied Pr [kN/m 2 21 30 57		erage Plate ement [mm] 0.00 0.28 0.55 0.79		
		14.20 21.00 24.00 0.39	89 132 151 2 End of T	est	1.00 1.29 1.58 0.65		
0 0.00 -0.20 -0.40 -0.60 -0.80 -1.00 -1.20 -1.40 -1.60 -1.80	Total T		20 ⊣	Average Cumulative Plate Settlement [mm] 4000 400 4000 4		Ine vs Settlement ressure [kN/m ²] 100 150	200
Pressure at 1.2 Modulus of Su			126 kN/m² 63 MN/m²/m				
Equivalent CB Moisture Conte Remarks:	R By Plate L		13 % 10 %				

Date Reported: 02/03/2020


Page: 1 of 1

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. All assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request. The analysis was carried out at site mentioned above. Moisture Content was carried out at i2 Analytical Limited, Unit 8, 8 Harrowden Road, Brackmills Industrial Estate, Northampton, NN4 7EB

SSF68.1 Plate CBR Report_REV1 20-89121_1

UKAS Testing	TEST CER	d from Plate Bearing test I	7 C <u>BS1377-9</u> W	Analytical Ltd Woodshots Mead roxley Green Bus latford Herts WD1	iness Park
Client Address: Biltons South S	Scarle Lane rby, Lincoln A		Client Reference Job Number: Date Tested: Tested By:		121_2
-	Immingham				
<u>Test Results</u> Laboratory Reference: Test Reference: Material Description: Test Location:	PL 2 2 Brown Sandy Gravel TP 20 CBR 20		Depth Top (mm) Layer Thickness Weather Conditi Kentledge Type: Plate Diameter [r	(mm): N/ ons: Di 9.	round Level /A ry/Overcast 5 Digger 45
	Applied Load [kN] 0.39 8.70 11.60 13.75 15.10 16.10 16.70 0.39	Applied Pressure [kN/m ²] 2 55 73 86 95 101 105 2	Average P Settlement 0.00 0.26 0.52 0.82 1.09 1.34 1.49 0.64		
		End of Test			
	/ Displacement Graph Total Time Elapsed (min)	Average Cumulative Plate Settlement [mm]	Ар	Pressure vs Set	/m²]
Pressure at 1.25mm S	ettlement:	99 kN/m²			
Modulus of Subgrade		49 MN/m²/m			
Equivalent CBR By Pl Moisture Content: Remarks:	ate Loading:	8.3 % 27 %			

Date Reported: 02/03/2020

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. All assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request. The analysis was carried out at site mentioned above. Moisture Content was carried out at i2 Analytical Limited, Unit 8, 8 Harrowden Road, Brackmills Industrial Estate, Northampton, NN4 7EB

		TEST CER			Croxley G	al Ltd ots Meadow reen Business Park erts WD18 8YS
4041 Client: Client Address	G D Pickle Biltons Far South Scar	m		Client Referer Job Number:	ice:	19112 20-89374_1
	Swinderby, LN6 9JA			Date Tested: Tested By:		28.02.20 NS
Contact: Site:	Jay Fox Nordic, Imr	mingham				
Test Results Laboratory Re Test Referenc		PL 1 1		Depth Top (m Layer Thickne		Ground Level N/A
Material Desci Test Location:	ription:	Grey Gravel TP 4 CBR 4		Weather Conc Kentledge Typ Plate Diamete	ditions: be:	Dry/Overcast 9.5 Digger 0.45
		Applied Load [kN]	Applied Pressu [kN/m²]	re Average Settlemer		7
		0.39	2	0.0		
		6.80	43	0.0		1
		9.80	62	0.5		
		11.00	<mark>6</mark> 9	0.7	8	
		12.80	80	1.0		
		14.00	88	1.2		
		15.80	99	1.5		
		0.39	2 End of Test	0.8	2	-
		isplacement Graph		Applied	d Pressur	e vs Settlement
0	Tota 5	I Time Elapsed (min)	20		Applied Pre	ssure [kN/m²]
0.00 -0.20 (mu) treme -0.60 -0.60 -0.80 -0.80 -1.00 -1.20 -1.40 -1.60 -1.80 Pressure at 1			89 kN/m ²	0 20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80	40	
Modulus of S	ubgrade Re	action:	45 MN/m²/m			
Equivalent Cl	BR By Plate	Loading:	6.9 %			
Moisture Con Remarks:	itent:		21 %			
			Signed	:		
			Darrer	Berrill		

Date Reported: 02/03/2020

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. All assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request. The analysis was carried out at site mentioned above. Moisture Content was carried out at i2 Analytical Limited, Unit 8, 8 Harrowden Road, Brackmills Industrial Estate, Northampton, NN4 7EB

		TEST CER of Equivalent CBR Value derive cordance with In House Procedur	d from Plate Bearing tes		Croxley Gr	al Ltd ots Meadow reen Business Park erts WD18 8YS	vironmental Scie
4041 Client: Client Address:	G D Pickles I Biltons Farm South Scarle Swinderby, L LN6 9JA	Lane		Client Referen Job Number: Date Tested: Tested By:	ce:	19112 20-89374_2 28.02.20 NS	
Contact: Site:	Jay Fox Nordic, Immi	ngham					
Test ResultsLaboratory Reference:PL 2Test Reference:2Material Description:Grey GravelTest Location:TP 8 CBR 8		2 Grey Gravel		Depth Top (mr Layer Thickne Weather Cond Kentledge Typ Plate Diameter	ss (mm): litions: e:	Ground Level N/A Dry/Overcast 9.5 Digger 0.45	
		Applied Load	Applied Pressure	e Average	Plate	7	
		[kN]	[kN/m ²]	Settlemen			
		0.39	2	0.00		1	
		4.50	28	0.28	3	1	
		7.60	48	0.56			
		9.80	62	0.82			
		11.60	73	1.0		4	
		13.80	87	1.3		4	
		14.90 0.39	94 2	1.50		-	
		0.09	End of Test	0.9	,	1	
	Time / Dis Total T	placement Graph ime Elapsed (min)		Applied	Pressure	e vs Settlement	
0	5		0		Applied Pres	ssure [kN/m²]	
0.00 -0.20 (mm) -0.40 -0.60 -0.80 -1.00 -1.20 -1.40 -1.60			Average Cumulative Plate Settlement [mm]	0 20 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60			
Pressure at 1.2	25mm Settler	nent:	84 kN/m²				
Modulus of Su	bgrade Read	tion:	42 MN/m²/m				
Equivalent CB	R By Plate Lo	oading:	6.2 %				
	ent:		16 %				

Date Reported: 02/03/2020

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. All assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request. The analysis was carried out at site mentioned above. Moisture Content was carried out at i2 Analytical Limited, Unit 8, 8 Harrowden Road, Brackmills Industrial Estate, Northampton, NN4 7EB

Appendix 6

Contaminated Land Risk Assessment Methodology

GD Pickles Ltd. Geoenvironmental Investigation Report Nordic Concept Stage Report Reference 19112.01 April 2020

Contaminated Land Risk Assessment Methodology

The following classification was published by the NHBC, EA, and CIEH (2008). This was developed from *DOE* Guide to Risk Assessment and Risk Management for Environmental Protection and the Statutory Guidance on Contaminated Land (Defra September 2006).

The methodology differs from that presented in *Contaminated Land Risk Assessment, A Guide to Good Practice* (CIRIA C552, 2001), particularly in terms of the definitions of classification of consequence, which includes consideration of immediacy of hazards. The risk assessment methodology is now better aligned with health and safety and geotechnical risk assessment processes.

The designation of risk is based upon the consideration of both:

- > the magnitude of the potential consequence (i.e. severity).
 - [takes into account both the potential severity of the hazard and the sensitivity of the receptor]
- the magnitude of probability (i.e. likelihood). [takes into account both the presence of the hazard and receptor and the integrity of the pathway]

The potential consequences of contamination risks occurring at this Site are classified in accordance with Table 1 below:

Table 1:	Classification of Consequence (Source: R&D 66:2008)
----------	---

Classification	Definition of Consequence			
Severe	Highly elevated concentrations likely to result in "significant harm" to human health as defined by the EPA 1990, Part 2A, if exposure occurs.			
	Equivalent to EA Category 1 pollution incident including persistent and/or extensive effects on water quality; leading to closure of a potable abstraction point; major impact on amenity value or major damage to agriculture or commerce.			
	Major damage to aquatic or other ecosystems, which is likely to result in a substantial adverse change in its functioning or harm to a species of special interest that endangers the long-term maintenance of the population.			
	Catastrophic damage to crops, buildings or property.			
Medium	Elevated concentrations which could result in "significant harm" to human health as defined by the EPA 1990, Part 2A if exposure occurs.			
	Equivalent to EA Category 2 pollution incident including significant effect on water quality; notification required to abstractors; reduction in amenity value or significant damage to agriculture or commerce.			
	Significant damage to aquatic or other ecosystems, which may result in a substantial adverse change in its functioning or harm to a species of special interest that may endanger the long-term maintenance of the population.			
	Significant damage to crops, buildings or property.			
Mild	Exposure to human health unlikely to lead to "significant harm".			
	Equivalent to EA Category 3 pollution incident including minimal or short lived effect on water quality; marginal effect on amenity value, agriculture orcommerce.			
	Minor or short lived damage to aquatic or other ecosystems, which is unlikely to result in a substantial adverse change in its functioning or harm to a species of special interest that would endanger the long- term maintenance of the population.			
	Minor damage to crops, buildings or property.			
Minor	No measurable effect on humans.			
Minor	in a substantial adverse change in its functioning or harm to a species of special interest that would endanger the long- term maintenance of the population. Minor damage to crops, buildings or property.			

GD Pickles Ltd. Geoenvironmental Investigation Report Nordic Concept Stage Report Reference 19112.01 April 2020

Equivalent to insubstantial pollution incident with no observed effect on water quality or ecosystems. Repairable effects of damage to buildings, structures and services.

The probability of contamination risks occurring at this Site is classified in accordance with Table 2 below. Note: A pollution linkage must first be established before probability is classified. If there is no pollution linkage then there is no potential risk. If there is no pollution linkage then it follows that there is no need to apply tests for probability and consequence.

Table 2: Classification of Probability

Classification Definition of Probability	
High Likelihood	There is pollutant linkage and an event would appear very likely in the short- term and almost inevitable over the long-term, or there is evidence at the receptor of harm or pollution.
Likely	There is pollutant linkage and all the elements are present and in the right place which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short-term and likely over the long-term.
Low Likelihood	There is pollutant linkage and circumstances are possible under which an event could occur. However, it is by no means certain that even over a long period such an event would take place, and is less likely in the shorter term.
Unlikely	There is a pollutant linkage but circumstances are such that it is improbable that an event would occur even in the very long-term.

For each possible pollutant linkage (source-pathway-receptor) identified, the potential risk can be evaluated based upon the following probability x consequence matrix shown in Table 3 below.

Table 3: Overall Contamination Risk Matrix

		Consequence			
		Severe	Medium	Mild	Minor
Probability	High likelihood	Very high risk	High risk	Moderate risk	Low risk
	Likely	High risk	Moderate risk	Moderate / Low risk	Low risk
	Low likelihood	Moderate risk	Moderate / Low risk	Low risk	Very low risk
	Unlikely	Moderate / Low risk	Low risk	Very low risk	Very low risk

R&D 66:2008 presents definitions of the risk categories, together with the investigatory and remedial actions that are likely to be necessary for each outcome. These definitions are reproduced in Table 4. These risk categories apply to each <u>pollutant linkage</u>, i.e. not only to each hazard or receptor.

[Continued next page]

Table 4: Definition of Risk Categories and Likely ActionsRequired

Risk Category	Definition and likely actions required	
Very high	There is a high probability that severe harm could arise to a designated receptor from an identified hazard at the Site without remediation action OR there is evidence that severe harm to a designated receptor is already occurring. Realisation of that risk is likely to present a substantial liability to be Site owner/or occupier. Investigation is required as a matter of urgency and remediation works likely to follow in the short-term.	
High	Harm is likely to arise to a designated receptor from an identified hazard at the Site without remediation action. Realisation of the risk is likely to present a substantial liability to the Site owner/or occupier. Investigation is required as a matter of urgency to clarify the risk. Remediation works may be necessary in the short-term and are likely over the longer term.	
Moderate	It is possible that harm could arise to a designated receptor from an identified hazard. However, it is either relatively unlikely that any such harm would be severe, and if any harm were to occur it is more likely, that the harm would be relatively mild. Further investigative work is normally required to clarify the risk and to determine the potential liability to Site owner/occupier. Some remediation works may be required in the longerterm.	
ow It is possible that harm could arise to a designated receptor from identified hazard, but it is likely at worst, that this harm if realised would normally be mild. It is unlikely that the Site owner/or occupier would face substantial liabilities from such a risk. Further investigative work (which is likely to be limited) to clarify the risk may be required. Any subsequent remediation works are likely to be relatively limited.		
Very low	It is a low possibility that harm could arise to a designated receptor, but it is likely at worst, that this harm if realised would normally be mild or minor.	
No potential risk	There is no potential risk if no pollution linkage has been established.	

Contact Us

ABPmer

Quayside Suite, Medina Chambers Town Quay, Southampton SO14 2AQ T +44 (0) 23 8071 1840 F +44 (0) 23 8071 1841 E enquiries@abpmer.co.uk

